Introduction Decision-aid Methodologies in Transportation

Evanthia Kazagli

evanthia.kazagli@epfl.ch

Transport and Mobility Laboratory

Introduction

The role of transportation systems is to:

- move people and goods;
- from one place (origin) to another (destination);
- safely;
- efficiently;
- with the minimum negative impacts.

The role of mathematical models

- Transportation systems are complex:
 - their elements are complex;
 - their interactions are complex.
- Need to simplify it in order to be able to:
 - describe;
 - design;
 - predict;
 - optimize.

Decision-aid Systems

In this course...

- Part 1: Operational models on the demand side:
 - Methodology: choice models;
 - Applications: transportation mode choice.

```
Lectures: Michel Bierlaire, Labs: Evanthia Kazagli.
```

- Part 2: Operational models on the supply side:
 - Methodology: operations research;
 - Applications: scheduling for airlines, ports, railways.

```
Lectures: Jianghang Chen, Labs: Tomas Robenek.
```


Transportation demand analysis

- Demand in transportation is a derived demand.
- A derived demand occurs as a result of demand for something else.
- Travel is a result of people's decision to *make a trip*, for a certain *purpose* (work, shopping, leisure), to a certain *place* (destination), by a certain *mode* (car, public transport, etc.), along a certain *route*, at a certain point in *time* (departure time).
- Direct demand:
 - wrt people: activities
 - wrt goods: consumption
- Demand/ supply interactions:
 - The level of service influences travel decisions
 - Travel decisions influence the level of service

Representations of the demand

- Aggregate representation:
 - Modeling element: flow
 - Flow: number of transported units (i.e. travelers, tons of freight, cars, flights, etc.) per unit of time, at a given location.
- Disaggregate representation:
 - Modeling element: the transported unit (i.e. travelers, etc.)
 - Individual behavior of the traveler, or of the actors of the logistic chain.

Representations of the supply

- Transportation supply = infrastructure;
- Network representation;
- Usually one network per mode (roads, railways, buses, airlines, etc.);
- Classical indicators associated with each link:
 - travel time;
 - cost;
 - flow (nbr of persons per unit of time);
 - capacity (= maximum flow);
- Static (average state) or dynamic (varies across time).

Modeling framework

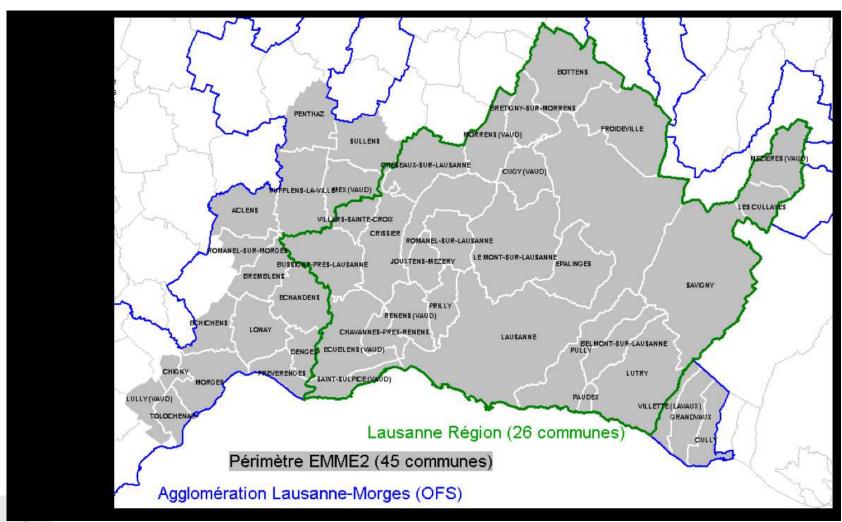
- We focus on the transportation of people;
- Four step model;
- Decompose the travel decision into 4 levels/ steps;
- Each step involves:
 - The description of a specific behavior:
 - 1. Is a trip performed or not?
 - 2. What is the destination?
 - 3. What is the transportation mode?
 - 4. What is the itinerary?
 - Data collection;
 - Modeling assumptions.

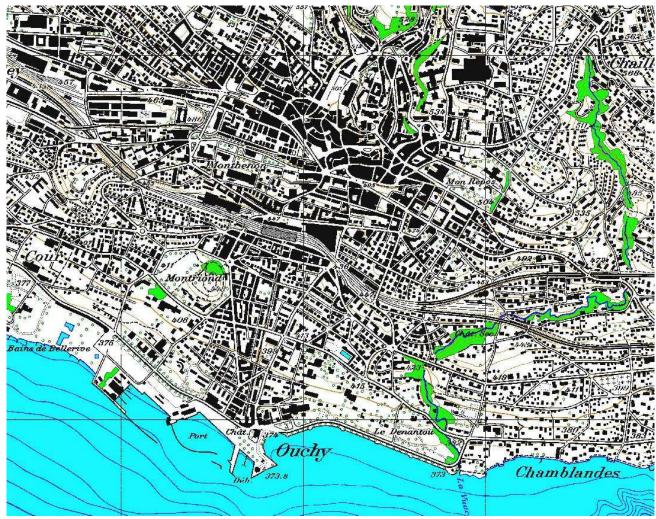
Step 0: Preparing the scope of the analysis

Spatial scope:

- Identification of the relevant perimeter for the analysis;
- Partition of the perimeter into geographical zones (e.g. Lausanne: 500 zones);
- Assumption: trips within a zone are ignored.

Temporal scope:

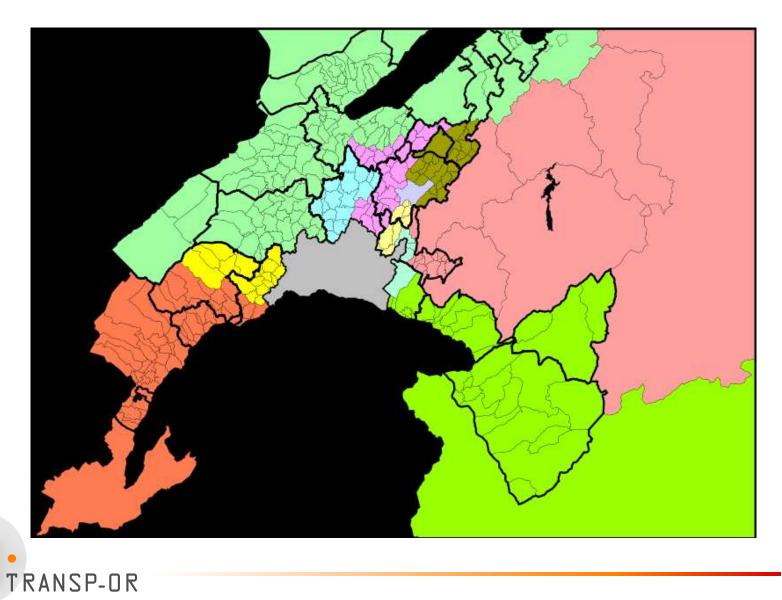

 Identification of the period of the analysis (e.g. morning peak-hour, evening peak-hour etc.).



Perimeter

TRANSP-OR

Zoning



Zoning

Zoning

Step 1: Trip generation

Is a trip performed or not?

- Derived demand.
- Travel is required when two successive activities are not located at the same place.
- Travel purposes: (Swiss Micro-census 2000)

Leisure	41743	40.4%
Work	23420	22.7%
Shopping	20297	19.6%
Education	7912	7.7%
Service	3352	3.2%
Business activity	3006	2.9%
Escorting	1732	1.7%
Other	1017	1.0%
Business trip	837	0.8%
Change mode	60	0.1%

Step 1: Trip generation (cont.)

- Land use, urban planning and transport are closely related.
- Question: where are the activities located?
- Main locations to identify in a city:
 - housing;
 - work places;
 - shops and commercial centres;
 - schools.
- Many studies focus on home-based trips.

Step 1: Trip generation (cont.)

Aggregate representation:

- For each zone, determine:
 - the number of trips originated from the zone;
 - the number of trips ending in the zone. during the analysis period
- Modeling tool: linear regression

$$Y = \beta_0 + \beta_1 X$$

with, for instance, Y = number of trips, X = population

Disaggregate representation:

- Activity choice models;
- Location choice models.

Step 2: Trip distribution

What is the destination?

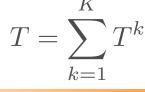
How many trips starting at a given origin are reaching a given destination?

- Aggregate representation: origin-destination (OD) matrix;
- Disaggregate representation: destination choice models.

Step 2: Trip distribution (cont.)

OD matrix

- T_{ij} is the flow between origin i and destination j
- For each origin i, $\sum_{j} T_{ij} = O_i$
- For each destination j, $\sum_{i} T_{ij} = D_{j}$



Step 3: Modal split

What is the transportation mode?

- Assume *K* modes
 - car (as driver);
 - car (as passenger);
 - bus;
 - metro;
 - bike;
 - motorbike;
 - walk;
 - etc.
- From OD matrix T, create K matrices T^k such that

Step 3: Modal split (cont.)

• In practice, one generate a split function *p* such that:

$$0 \le p(k|i,j) \le 1, \ \forall i,j,$$

and

$$\sum_{k=1}^{K} p(k|i,j) = 1, \ \forall i,j$$

Obviously, we have

$$T_{ij}^k = p(k|i,j)T_{ij}$$

- The split function *p* is derived from a mode choice model;
- This will be the main focus of this course.

Step 4: Trip assignment

What is the itinerary? Aggregate representation:

- Shortest path algorithm;
- Based on travel time, so "fastest path".

Disaggregate representation:

- Route choice models;
- Based on various indicators.

Note:

If many travelers use the best path, it will be congested...

...and it will not be the best anymore.

This is captured by the concept of "traffic equilibrium"

Summary

- Four step models
 - 1. Generation;
 - 2. Distribution;
 - 3. Modal split;
 - 4. Assignment.
- Each step captures a type of choice
 - 1. Activity location choice;
 - 2. Destination choice;
 - 3. Mode choice;
 - 4. Route choice.

Main objective of this course:

Introduction to choice models: theory and case studies.

