Decison-Aid Methodologies in Transportation Optimization Exercise 1

Tomáš Robenek

April 16, 2013

Agenda

1 Software

- 2 Small Example
- 3 References

1 Software

- IBM ILOG CPLEX Optimization Studio
- Layout
- Syntax
- 2 Small Example
- 3 References

IBM ILOG CPLEX Optimization Studio

Shopping cart items					
Quantity	Part number	[*] IBM price excluding tax	Line total		
1	DOCVOLL	8,740.00	8,740.00		
Authorized User	Description	IBM ILOG CPLEX Optimization Studio Developer Edition Authorized User License + SW Subscription & Support 12 M	Nonths		

- 90 Days Trial
- OPL Studio Part of the distribution

- OPL provides syntax that is close to the mathematical formulation, thus making it easier to make the transition from the mathematical formulation to something that can be solved by the computer.
- It enables a clean separation between the model and the accompanying data. The same model can then be solved with different input data with little extra effort.
- Other modeling languages: GAMS, AMPL and Mosel
- Used for linear and integer problems; not for non-linear problems!

Layout

BM ILOG CPLEX Optimization Studio			-					-		- 0 - X	
File Edit Navigate Search Run Window Help											
11 • 🖂 🖄 🖉 🖓 + 🕼 🌒 1 = Z 1 🏘 • O • 🕑	• Q • 0 = // • 10 + 0 •										
🗑 OPL Projects 🔅 🔅 Debug) 📄 🐄 "	ABB_Final.mod [3] BABB_Final.dat							🕃 Outline 😫 🔪		R	
10 ABB	6 range Stops = 1N; //bus stops	5						using CPLEX			
Run Configurations	7							💰 Internal dat	a (3)		
AB8.mod : CPLEX	8//Given Sets							 DFS_num 	ber: float		
AB8.dat	9 int Fast_Stops[Stops] = .	; //l if the dwellin	ng time is	less than 20s; 0	otherwise			· M : int			
18 ABB Final	11 float fined math(Chang)	//dwelling time in	n nours					** Stops : range			
Ø Run Configurations	12 float E[Stops] =	//energy consumpt	ion between	stops			11	S External dat	a (19)		
D Configuration1 (default)	13							· A_DFS :	nt.		
ABB Final.mod : CPLEX	14//Parameters	14//Parameters						* A_FFS : int			
ABB Final.dat	15 int A_FFS = .	; //the cost of	a charger	for 50 kW				· A TFS : in	it.		
ABB Final.mod : CPLEX	16 int A_TFS = .							" cost ener	ov battery : int		
ABB Final.dat	17 int A DFS -							E: float!	itops		
188 exercise	19 int cost energy battery	//cost of 1 M	n number (c	ould be maximum p	lower used			Fast_Stop	s : int[Stops]		
12 OR Course	20 int number of buses =	: //number of b	inses	-1				fixed cos	a: float/Stops1		
2 Overall	21//float battery UB //-	; //naximum	capacity o	f the battery				. L DFS : in	ıt		
12 SubProblem	22 int power_UB_Fast_Stop = .	; //upper bound	of power g	iven by charger	(kW) at st	ops with dw	e	. L_TFS : in			
1 ²⁰ Thesis	23 int power_UB_Slow_Stop = .	; //upper bound	of power g	iven by charger	(kW) at st	ops with dw	e -	• Noint			
	24 int power_LB_Fast_Stop = .	; //lower bound	of power g	iven by charger	(kW) at st	ops with dw	e .	" number -	of buses : int		
	25 int power LB Slow Stop = .		or power g	iven by charger	(xw) at st	ops with dw	4	* power Li	B Fast Stop : int		
	27 int H DFS Humber = Cell(Humber	or_puses/4);						" power Li	Slow Stop : int		
S Problem browser 12 Mr Variables Se Breakmointe	28 int L DFS =							" power U	B Fast Stop : int		
	29 int U TFS = .							" power U	B Slow Stop : int		
	30 int L TFS							. Stint			
	31							T floatis	Innet		
Name Value	32//Decision Variables							# IL DES	nt		
	33 dvar float+ battery_UB;			1- 100				" IL TES : in	t		
	34 dvar float+ power[Stops]:	//power charg	ed at stop	in xwn	-			2 Decision va	riables (8)		
	36 der floet powr sterferstens: //powr level after visiting stop i in Web						 battery I 	R: dear floate			
	37 dwar float+ power used(Stops);	//maximum nosa	er provided	by FFS WW	***			- county_c	antended a dusc h		
	38 dvar boolean has FFS[Stops];	//1 - if has	FFS: 0 - ot	berwise				in capacity	exceeded . ovar o	oolean(stops	
	X							III Hab (PPS :	ovar boolean(sco)	hal	
	🏦 Problems 🕫 🖉 Scripting log) 🖗 Sciutions 🛸 Conflicts) 💐 Relaxations 🔅 Engine log) 📽 Statistics 🗞 Profiler							a power.c	mai moar#(acops)		
								(Constanting of	(T) 1		
	o nems							meroperties at the	E 1		
	Description		Resource	Path	Location	type		Property	Value		

Syntax

- Data Declarations to define known parameters
 - simple:
 - int c = 8;
 - set:
 - range Days = 1 .. 7;
 - from data file:
 - in the model file:
 {string} days[Days] = ...;
 - in the data file: days = {"Monday", "Tuesday", ..., "Sunday"};
- Decision Variables
 - dvar float+ x;
 - dvar boolean y;

Syntax

 Objective Function – minimize, maximize maximize 6 * x; Constraints – subject to { forall(i,j in I) x[i][j] <= 10; sum(i,j in I)x[i][j] * 5 == 65; }: Print – execute{writeln("x=", x);}

2 Small Example

3 References

A company produces two products:

- doors
- windows

It has three production facilities with limited production time available:

- Factory 1 produces the metal frame
- Factory 2 produces the wooden frame
- Factory 3 produces glass and mounts the parts

The products are produced in series of 200 items and each series generates a revenue depending on the product. Each series require a given amount of time of each factory's capacity. The problem is to find the number of series of each product to maximize the revenue.

	Hours/Series		Hours at Disposal
	Door	Window	
Factory 1	1	0	4
Factory 2	0	3	12
Factory 3	3	2	18
Revenue/Series	3 000	5 000	-

Small Example

• Formulate the problem mathematically:

- input parameters
- decision variable(s)
- objective function
- constraints
- Model the problem in OPL
- Run the model and check your results in the "Solutions" tab
- When finished proceed to the instructions 8 file

Create New Project in OPL

New Project			٢)			
Create Project	t jject.					
Project name:	Small_Example					
Project location:	C:\Users\XPS 1645\opl	Browse.				
Project folder:	C:\Users\XPS 1645\opl\Small_Example					
Options						
Description:						
Add a default Run Configuration						
Create Model						
Create Settings						
?		Finish Cancel				

How to Run the Model

14 / 17

Decision is integer:

- revenue 29 000
- x = [3 4]
- Decision is float:
 - revenue 30 000
 - x = [3.3333 4]

2 Small Example

References

- The presentation has been based on the following tutorial:
- http://folk.uio.no/trulsf/ opl/opl_tutorial.pdf

