Computer Lab II

Further Introduction to Biogeme Binary Logit Model Estimation

Evanthia Kazagli

evanthia.kazagli@epfl.ch

Today

- Further introduction to BIOGEME
- Estimation of Binary Logit models

BIOGEME - Data file

- File extension .dat
- First row contains column / variable names
- One observation per row
- Each row must contain a choice indicator
- Example with the Netherlands transportation mode choice data: choice between car and train

BIOGEME - Data file (cont.)

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
• • •					
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

BIOGEME - Data file (cont.)

netherlands.dat

	_					
id	choice	rail_cost	rail_time	car_cost	car_time	
1	0	40	2.5	5	1.167	
2	0	35	2.016	9	1.517	
3	0	24	2.017	11.5	1.966	
4	0	7.8	1.75	8.333	2	
5	0	28	2.034	5	1.267	
	Unique identifier of observations					
219	1	35	2.416	6.4	1.283	
220	1	30	2.334	2.083	1.667	
221	1	35.7	1.834	16.667	2.017	
222	1	47	1.833	72	1.533	
223	1	30	1.967	30	1.267	

BIOGEME - Data file (cont.)

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
• • •	Choice indicator, 0: car and 1: train				
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

BIOGEME - Model file

- File extension . mod
- Must be consistent with data file
- Contains deterministic utility specifications, model type etc.
- The model file contains different *sections* describing different elements of the model specification

 How can we write the following deterministic utility functions for BIOGEME?

$$V_{\text{car}} = \mathsf{ASC}_{\text{car}} + \beta_{\text{time}} \mathsf{time}_{\text{car}} + \beta_{\text{cost}} \mathsf{cost}_{\text{car}}$$

$$V_{\text{rail}} = \beta_{\text{time}} \text{time}_{\text{rail}} + \beta_{\text{cost}} \text{cost}_{\text{rail}}$$


```
[Choice]
choice
[Beta]
          DefaultValue LowerBound UpperBound
// Name
                                           status
ASC CAR 0.0
                      -100.0 100.0
                      -100.0 100.0
ASC RAIL 0.0
BETA_COST 0.0
                      -100.0 100.0
        0.0
                      -100.0 100.0
BETA TIME
[Utilities]
//Id Name Avail linear-in-parameter expression
    Car one ASC_CAR * one + BETA_COST * car_cost +
              BETA TIME * car time
    Rail one ASC_RAIL * one + BETA_COST * rail_cost +
              BETA TIME * rail time
```



```
[Choice] choice
```

```
[Beta]
// Name DefaultValue LowerBound UpperBound status
ASC_CAR 0.0 -100.0 100.0 0
ASC_RAIL 0.0 -100.0 100.0 1
BETA_COST 0.0 -100.0 100.0 0
BETA_TIME 0.0 -100.0 100.0 0
```

[Utilities]


```
[Choice] choice
```

[Beta]

// Name	DefaultValue	LowerBound	UpperBound	status
ASC_CAR	0.0	-100.0	100.0	0
ASC_RAIL	0.0	-100.0	100.0	1
BETA_COST	0.0	-100.0	100.0	0
BETA_TIME	0.0	-100.0	100.0	0

[Utilities]


```
What is one?
[Choice]
choice
              Which is the type of model?
[Beta]
           DefaultValue LowerBound UpperBound
// Name
                                            status
ASC CAR
           0.0
                       -100.0 100.0
ASC RAIL 0.0
                       -100.0 100.0
BETA_COST 0.0
                       -100.0 100.0
                       -100.0 100.0
         0.0
BETA TIME
[Utilities]
//Id Name Avail linear-in-parameter expression
    Car one ASC_CAR * one + BETA_COST * car_cost +
              BETA TIME * car time
    Rail one
             ASC_RAIL * one + BETA_COST * rail_cost +
              BETA TIME * rail time
```



```
[Expressions]
// Define here arithmetic expressions for name that are not directly
// available from the data
one = 1

[Model]
// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL
// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords
//
$MNL
```


Model and Data Files

- How to read and modify model files?
 How to read data files?
 - GNU Emacs, vi, TextEdit (Mac) or Wordpad (Windows)
 - Notepad (Windows) should not be used!

BIOGEME Results: Netherlands dataset

BIOGEME Results

BIOGEME Results (cont.)

Today

- Further introduction to BIOGEME
- Estimation of Binary Logit models

Binary Logit Case Study

- Available datasets:
 - Mode choice in Netherlands
- Descriptions available on the course web site

How to go through the Case Studies

- Download the files related to the Netherlands dataset and case study from the course website;
- Study the .mod files with the help of the descriptions;
- Run the .mod files with BIOGEME;
- Interpret the results and compare your interpretation with the one we have provided;
- Develop other model specifications.

Course website (under laboratories)

- http://transp-or.epfl.ch/courses/decisionAid2013/labs.php
- BIOGEME software (including documentation and utilities)
- For each Case Study:
 - Data files for available datasets;
 - Model specification files;
 - Possible interpretation of results.

Today's plan

Group work

- Listen to the description of dataset;
- Gather in groups;
- Generate .mod file (base);
- Test an idea/ hypothesis.

Lab assignment

- Work with your group on your own specification of a Binary Logit on the Netherlands mode choice data;
- Examine the data & and the variables' description;
- Write a .mod file;
- Formulate your own hypothesis;
- Test your hypothesis;
- Send your results by e-mail on Friday, March 8, by noon:
 - the .html file
 - .mod file
 - 5-one-sided-pages report.

Specifying models: Recommended steps

- Formulate a-priori hypothesis:
 - Expectations and intuition regarding the explanatory variables that appear to be significant for mode choice.
- Specify a minimal model:
 - Start simple;
 - Include the main factors affecting the mode choice of (rational) travelers;
 - This will be your starting point.
- Continue adding and testing variables that improve the initial model in terms of *causality*, and *efficiency* to predict what actually happened in the sample.

Evaluating models

The main indicators used to evaluate and compare the various models are summarised here:

- Informal tests:
 - signs and relative magnitudes of the parameters β values (under our a-priori expectations);
 - trade-offs among some attributes and ratios of pairs of parameters (e.g. reasonable value of time).
- Overall goodness of fit measure:
 - adjusted rho-square (likelihood ratio index): takes into account the different number of explanatory variables used in the models and normalizes for their effect → suitable to compare models with different number of independent variables. We check this value to have a first idea about which model might be better (among models of the same type), but it is not a statistical test.

Evaluating models (cont.)

Statistical tests:

- *t-test values*: statistically significant explanatory variables are denoted by t-statistic values remarkably higher/ lower than ± 2 (for a 95% level of confidence);
- final log-likelihood for the full set of parameters: should be remarkably different from the ones in the naive approach (null log-likelihood and log-likelihood at constants); we ask for high values of likelihood ratio test $[-2(LL(0)-LL(\beta))]$ in order to have a model significantly different than the naive one.

Test of entire models:

• *likelihood ratio test* $[-2(LL(\hat{\beta}_R) - LL(\hat{\beta}_U))]$: used to test the null hypothesis that two models are equivalent, under the requirement that the one is the restricted version of the other. The likelihood ratio test is X^2 distributed, with degrees of freedom equal to $K_U - K_R$ (where K the number of parameters of the unrestricted and restricted model, respectively).

- p. 28/28