Decison-Aid Methodologies in Transportation Optimization Exercise 4

Tomáš Robenek

May 7, 2013

Aircraft Rotation/Fleet Assignment Problem – Input

Aircraft Rotation Problem – Output

Model I

F	_	set of flight legs to be covered
ĸ	_	set of fleet types
M ^k	_	number of available aircraft of type k
c_i^k	_	operating cost minus the revenue of aircraft type k to flight leg i
N ^k	_	set of nodes in the time-space network of aircraft type k
G^k	_	set of ground nodes in the time-space network of aircraft type k
O(k, n)	_	set of flight legs originating at node n in fleet k 's time-space network
I(k, n)	_	set of flight legs terminating at node n in fleet k 's time-space network
n^+	-	ground arc originating in node <i>n</i>
n ⁻	-	ground arc terminating in node <i>n</i>
CL(k)	-	set of flight legs of fleet k
CG(k)	-	set of ground arcs of fleet k

$$f_i^k = \begin{cases} 1 & \text{if and only if flight leg } i \text{ is to be operated with an aircraft type } k, \\ 0 & \text{otherwise.} \end{cases}$$

$$y_a^k$$
 – number of aircraft type k on the ground arc a

Model II

max s.t.

$$\begin{split} \sum_{i \in F} \sum_{k \in K} c_i^k \cdot f_i^k & (1) \\ \sum_{i \in F} f_i^k = 1, & \forall i \in I, \\ y_{n^+}^k + \sum_{i \in O(k,n)} f_i^k - y_{n^-}^k - \sum_{i \in I(k,n)} f_i^k = 0, & \forall n \in N^k, \forall k \in K, \\ \sum_{a \in CG(k)} y_a^k + \sum_{i \in CL(k)} f_i^k \leq M^k, & (3) \\ \sum_{a \in CG(k)} y_a^k + \sum_{i \in CL(k)} f_i^k \leq M^k, & \forall k \in K, \\ f_i^k \in \{0,1\}, & \forall i \in F, \forall k \in K \\ (5) \\ y_a^k \geq 0, & \forall a \in G^k, \forall k \in K. \\ (6) \end{split}$$

_ _

- this is the basic model, your model will have more constraints
- we don't have limit on the fleet size (we don't need variable y), but since there is a pullout cost and operating cost, the minimization function will minimize the fleet size
- be careful on what are the decision variables!
- to calculate the fare profit of the leg, use

minl(value1, value2)

function

- constraints to cover:
 - start/end in the base
 - come back to the same base, that the plane left
 - 2 legs can be connected only when the airport is the same
 - turnaround constraint
 - all legs covered
 - flow conservation

how to use arc representations in OPL:

```
tuple ArcLeg{
    int start;
    int end;
  }
  forall(i in Legs)
```

```
sum(a in Arcs, b in Bases: a.end==i)...
```


References

- L. Clarke, E. Johnson, G. Nemhauser, and Z. Zhu, *The Aircraft Rotation Problem*, Annals of Operations Research **69** (1997), 33–46.
- Lloyd Clarke, Ellis Johnson, George Nemhauser, and Zhongxi Zhu, *The aircraft rotation problem*, Annals of Operations Research **69** (1997), no. 0, 33–46 (English).

