Decision aid methodologies in Transportation

Lecture 7: Introduction to Optimization in Maritime Transport

29th May, 2012

Nitish Umang

nitish.umang@epfl.ch

Transport and Mobility Laboratory
Outline

- Introduction to Maritime Transport
- Port Operations and Optimization Problems
 - Fleet assignment, ship routing and scheduling
 - Berth Allocation
 - Quayside Operations
 - Yard Operations
- Berth Allocation Problem Formulation
- Summary
Shipping and Maritime Transport

- Major transportation mode of international trade
- Three modes of operations:
 - Industrial shipping: the cargo owner also owns the ship
 - Tramp shipping: operates on demand to transfer cargo
 - Liner shipping: operates on a published schedule and a fixed port rotation
Shipping and Maritime Transport

- Ships carry different type of freight:
 - Solid bulk
 - Liquid bulk
 - Containers

- Containerized trade accounts for 25% of total dry cargo (UNCTAD, 2008)

- Annual growth rate: 9.5% for containers vs. 5.3% for general cargo (between 2000 and 2008)
Shipping and Maritime Transport

- Optimization problems in Maritime Shipping
 - design of optimal fleets in size and mix
 - ship routing (sequence of ports)
 - ship scheduling (temporal aspects)
 - fleet deployment (assignment of vessels to routes)
Layout of a Container Terminal
The Quay

Berthing positions or Berths
The Quay

Ships or Vessels
The Quay

Quay cranes (QC)
Quayside Operations

- **Berth allocation**
 - Assign vessels to berthing positions
 - Schedule incoming vessels

- **Quay crane assignment & scheduling**
 - Assign quay cranes to moored vessels
 - Schedule their movements
The Yard
The Yard

Yard blocks
The Yard

Yard cranes
Yard Operations

- **Yard/block allocation**
 - Assign a block in the yard to groups of unloaded containers

- **Storage space allocation**
 - Assign a slot within the block to every container

- **Yard crane allocation and scheduling**
 - Assign yard cranes to yard blocks
 - Schedule their movements and their workload
Transfer and Gate Operations

- **Transfers**
 - From quay to yard / from yard to gate
 - Fleet management / scheduling of trucks and AGV

- **Gate operations**
 - Retrieve stored containers
 - Loading of trucks and trains
Optimization Problems and Solution Process

- **Problem Definition**
 - What are we trying to model?
 - What are the assumptions and/or approximations?

- **Mathematical Model**
 - Objective Function
 - Constraints
 - Data

- **Solution Algorithm**
 - Exact approaches (MIP solver, column generation etc.)
 - Heuristic Approaches (greedy heuristic, tabu search etc.)

- **Results**
The Berth Allocation Problem

- Berth Layout (discrete, continuous or hybrid)
- Vessel characteristics such as length of the vessel (including clearance), draft of the vessel
- Arrival times
 - Static arrivals (no expected arrival times or they impose only a soft constraint)
 - Dynamic arrivals (berthing cannot start before expected arrival times)
- Projected handling time
 - Deterministic (known in advance and unchangeable)
 - Dependent on berthing positions, number and work schedule of assigned cranes
- Latest departure times (maximum waiting + handling time) may be prescribed
- Objective Function
 - Minimize total delays of all vessels
 - Minimize make-span of the planning operations
Berthing Layout

Discrete Layout

Continuous Layout

Hybrid Layout
Mathematical Formulation

- **Problem Type**: Discrete berthing layout with dynamic vessel arrivals and given handling times

- **Decision Variables**
 - m_i: start time of handling of vessel i
 - x_{ik}: binary parameter equal to 1 if vessel i is assigned to k berth; 0 otherwise
 - y_{ij}: binary parameter equal to 1 if vessel i is assigned to the left of j vessel without overlapping; 0 otherwise
 - z_{ij}: binary parameter equal to 1 if handling of vessel i finishes before handling of vessel j; 0 otherwise
Mathematical Formulation

- **Model**

\[
\begin{align*}
\min \quad & \sum_{i \in N} (m_i - a_i) \\
\text{s.t.} \quad & \sum_{i \in N} (m_i - a_i) \geq 0 \\
& \sum_{k \in M} (k x_{jk}) + B (1 - y_{ij}) \geq \sum_{k \in M} (k x_{ik}) + 1 \\
& m_j + B (1 - z_{ij}) \geq m_i + C_i \\
& y_{ij} + y_{ji} + z_{ij} + z_{ji} \geq 1 \\
& \sum_{k \in M} x_{ik} = 1 \\
& \sum_{k \in M} (d_k - D_i) x_{ik} \geq 0 \\
& \sum_{k \in M} (l_k - L_i) x_{ik} \geq 0
\end{align*}
\]

\(\forall i \in N, \quad \forall i, j \in N, i \neq j, \quad \forall i, j \in N, i \neq j, \quad \forall i \in N, \quad \forall i \in N \)
Solution Analysis

- Generate instances preferably based on real data from the port if available

- Solve the model using MIP solver. Typically, MIP solvers fail to produce optimal results for larger sized instances

- Develop heuristic approaches to produce sub-optimal results for larger sized instances OR more sophisticated exact solution methods to obtain optimal results.
Summary

- Many decision problems in port terminals
- Modeled as optimization problems (MIPs)
- Optimization is helpful in
 - Reducing costs
 - Improve productivity and efficiency
 - Reduce delays / Speed up operations