Decision aid methodologies in transportation

Lecture 6 (part-2): Container terminal management

Ilaria Vacca

ilaria.vacca@epfl.ch

Transport and Mobility Laboratory

Outline

- ✓ Introduction to maritime transport
- ✓ Overview container terminals
- Operations and optimization problems
- ✓ The Berth Allocation Problem
- ✓ The Quay Crane Scheduling Problem
- ✓ Conclusion

Shipping and Maritime Trasport

- Major transportation mode of international trade
- Three modes of operations:
 - Industrial shipping: the cargo owner also owns the ship
 - Tramp shipping: operates on demand to transfer cargo
 - Liner shipping: operates on a published schedule and a fixed port rotation

Shipping and Maritime Transport

Optimization problems in Maritime Shipping

- design of optimal fleets in size and mix
- ship routing (sequence of ports)
- ship scheduling (temporal aspects)
- fleet deployment (assignment of vessels to routes)

Shipping and Maritime Trasport

- Ships carry different type of freight:
 - Solid bulk
 - Liquid bulk
 - Containers
- Containerized trade accounts for 25% of total dry cargo (UNCTAD, 2008)
- Annual growth rate: 9.5% for containers vs 5.3% for general cargo (between 2000 and 2008)

Container world trade

Top container terminals

	Million TEU					
Worldwide	1999	2007	2008	2009		
1 Singapore (Singapore)	15.9	27.9	29.9	25.9		
2 Shangai (China)	4.2	26.1	28.0	24.9		
3 Hong Kong (China)	16.2	23.9	24.5	21.1		
Europe						
1 Rotterdam (Netherlands)	6.2	10.7	10.8	9.7		
2 Antwerp (Belgium)	3.6	8.1	8.7	7.3		
3 Hamburg (Germany)	3.8	9.9	9.7	7.0		

Scheme of a container terminal

Scheme of a container terminal

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

The Quay

The Quay

The Quay

Quayside operations

- Berth allocation
 - Assign vessels to berthing positions
 - Schedule incoming vessels

- Quay crane assignment & scheduling
 - Assign quay cranes to moored vessels
 - Schedule their movements

May 24, 2011

Container terminal management

Yard operations

- Yard/block allocation
 - Assign a block in the yard to groups of unloaded containers
- Storage space allocation
 - Assing a slot within the block to every container
- Yard crane allocation and scheduling
 - Assign yard cranes to yard blocks
 - Schedule their movements and their workload

Transfers and Gate operations

Transfers

- From quay to yard / from yard to gate
- Fleet management / scheduling of trucks and AGV

- Gate operations
 - Retrieve stored containers
 - Loading of trucks and trains

Optimization problems & Solution process

1. Problem definition

- Data
- Objective
- Constraints

2. Mathematical model

- Equations
- 3. Solution algorithm
 - MIP solver
 - Heuristics / Exact approaches
- 4. Results

The Berth Allocation Problem

Given:

- A set of incoming vessels
- A set of discrete berths / A continuos quay
- A time horizon
- Time windows on the vessels' arrival time
- Vessels' length
- Vessels' expected handling time

The Berth Allocation Problem

We aim to:

- Assign ships to berths
- Schedule the ships in every berth

Such that:

- A cost function is minimized
- All vessels arrive within their time window
- No overlap in space and time

A berth allocation plan

Decision variables:

- x(i,j,k) : 1 if vessel j is assigned to berth k right after vessel i
- T(i) : arrival time of vessel i

Objective function:

• minimize cost / maximize profit

Constraints:

- do not overlap in space and time
- arrival within the time window

$$\min \sum_{i \in N} \sum_{k \in M} v_i \left(T_i^k - a_i + h_i^k \sum_{j \in N \cup \{d\}} x_{ij}^k \right)$$
(11)
s.t.
$$\sum_{k \in M} \sum_{j \in N \cup \{d\}} x_{ij}^k = 1 \qquad \forall i \in N \qquad (12) \\ \sum_{j \in N \cup \{d\}} x_{i,j}^k = 1 \qquad \forall k \in M \qquad (13) \\ \sum_{i \in N \cup \{o\}} x_{i,j}^k = \sum_{j \in N \cup \{o\}} x_{ji}^k \qquad \forall k \in M, i \in N \qquad (14) \\ \sum_{j \in N \cup \{d\}} x_{ij}^k = \sum_{j \in N \cup \{o\}} x_{ji}^k \qquad \forall k \in M, i \in N \qquad (15) \\ T_i^k + h_i^k - T_j^k \le (1 - x_{ij}^k) M_{ij}^k \qquad \forall k \in M, i \in N \qquad (15) \\ a_i \le T_i^k \qquad \forall k \in M, i \in N \qquad (17) \\ T_i^k + h_i^k \sum_{j \in N \cup \{d\}} x_{ij}^k \le b_i \qquad \forall k \in M, i \in N \qquad (18) \\ s^k \le T_o^k \qquad \forall k \in M, i \in N \qquad (19) \\ T_d^k \le e^k \qquad \forall k \in M, (i, j) \in A \qquad (21) \\ T_i^k \in \mathbb{R}^+ \qquad \forall k \in M, i \in V \qquad (22)$$

- General purpose solvers (Cplex, Gurobi, etc.)
- Fail because the problem is too complex
- Only small instances are solved
- It takes ages to provide a solution for real size instances

The solution algorithms

- Heuristic algorithm
 - Provide feasible solution, not the optimal one
 - Use simple rules and is fast
- Exact algorithm
 - Designed for this specific problem
 - Use sophisticated techniques
 - Provide optimal solutions

Computational results

In	stance	DBAP+	HVRPTW+	GS	PP	T^2S	Difference ^d
		Solved	Solved	Time	Value	Value	(%)
	01	÷	÷	5.99	759	759	
	02	÷	÷	3.70	964	965	0.1
	03	÷	÷	2.95	970	974	0.4
	04	÷	÷	2.72	688	702	2.0
×	05	÷	÷	6.97	955	965	1.0
25	06	÷	÷	3.10	1129	1129	
	07	÷	÷	2.31	835	835	
	08	÷	÷	1.92	627	629	0.3
	09	÷	÷	4.76	752	755	0.4
	10	÷	÷	6.38	1073	1077	0.4
	Mean	0	0	4.08			0.5
	01	\checkmark	\checkmark	3.62	657	667	1.5
	02	\checkmark	\checkmark	3.15	662	671	1.4
	03	÷	÷	4.28	807	823	2.0
	04	÷	÷	3.78	648	655	1.1
×	05	÷	\checkmark	3.85	725	728	0.4
25	06	÷	÷	3.60	794	794	
	07	÷	÷	3.54	734	740	0.8
	08	÷	÷	3.93	768	782	1.8
	09	\checkmark	\checkmark	3.73	749	759	1.3
	10	\checkmark	\checkmark	3.82	825	830	0.6
]	Mean	4	5	3.73			1.1

The Quay Crane Scheduling Problem

Given

- A set of moored vessels
- A set of holds for every vessel
- A set of quay cranes
- The processing time of holds by a quay crane

The Quay Crane Scheduling Problem

We aim to

- Assign quay cranes to holds
- Schedule the quay cranes in time

Such that

- The latest completion time is minimized
- No overlap between cranes occurs

The Quay Crane Scheduling Problem

May 24, 2011

Land side

Container terminal management

Decision variables

- X(h,k) : 1 if hold h is handled by crane k
- Y(h,h'): 1 if hold h finishes before h' starts
- C(h) : completion time of hold h

Constraints:

- Every hold must be performed by one crane
- Precedence constraints
- Interference constraints

Minimize:	
$\max_h C_h$	(1)
Subject to:	
$C_h - p_h \ge 0 \forall 1 \leqslant h \leqslant H$	(2)
$\sum_{k=1}^{K} X_{h,k} = 1 \forall 1 \leqslant h \leqslant H$	(3)
$C_h - (C_{h'} - p_{h'}) + Y_{h,h'}M > 0 \forall 1 \leq h, h' \leq H$	(4)
$C_h - (C_{h'} - p_{h'}) - (1 - Y_{h,h'})M \leq 0 \forall 1 \leq h, h' \leq H$	(5)
$M(Y_{h,h'} + Y_{h',h}) \geq \sum_{k=1}^{K} k X_{h,k} - \sum_{l=1}^{K} l X_{h',l} + 1 \forall 1 \leq h < h' \leq H$	(6)
$X_{h,k}, Y_{h,h'} = 0 \text{ or } 1 \forall 1 \leqslant h, h' \leqslant H, \ \forall 1 \leqslant k \leqslant K$	(7)

Results

Experiment No.	Size (holds \times cranes)	CPLEX		GA	
		Value	CPU (s)	Value	CPU (s)
1	6×2	341	10.87	341	5.41
2	6×3	282	128.20	282	5.28
3	7×2	436	437.39	436	5.33
4	7×3	299	8014.58	299	5.53
5	8×2	448	11889.95	448	5.79
6	8×3	330	344951.97	330	5.48

May 24, 2011

Container terminal management

Summary

- Many decision problems in container terminals
- Modeled as optimization problems (MIPs)
- Optimization is helpful in
 ✓ Reducing costs
 - ✓ Improve productivity and efficiency
 - ✓ Reduce delays / Speed up operations

