Sampling

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

Outline

- Introduction
- Sampling strategies
- Estimation: maximum likelihood
- Conditional maximum likelihood

Introduction

Sampling strategy

- Does the sample perfectly reflect the population?
- Is it desirable to perform random sampling?
- How will other sampling strategies affect the model estimates?
- What are the specific implications for discrete choice?

Introduction

Until now...

• ... we have assumed that x is fixed:

$$P(i|x;\beta).$$

- When we draw a sample, actually we draw both i and x.
- We need to write the joint probability of *i* and *x*:

$$f(i,x|\beta) = P(i|x;\beta)f(x).$$

 Depending on how the sample is drawn, this may impact the estimator.

Types of variables

Exogenous/independent variables (denoted by x)

- age, gender, income, prices
- Not modeled, treated as given in the population
- May be subject to what if policy manipulations

Endogenous/dependent variable (denoted by i)

Choice

Modeling assumption

Causality: $P(i|x;\theta)$

Types of variables

The nature of a variable depends on the application

Example: residential location

- Endogenous in a house choice study
- Exogenous in a study about transport mode choice to work

Meaningful modeling assumption

A model $P(i|x;\theta)$ may fit the data and describe correlation between i and x without being a causal model. Example: P(crime|temp) and P(temp|crime).

Important

Critical to identify the causal relationship and, therefore, exogenous and endogenous variables.

Outline

- Introduction
- Sampling strategies
- Estimation: maximum likelihood
 - Exogenous sample maximum likelihood
- 4 Conditional maximum likelihood
 - Logit and choice-based sample
 - MEV and choice-based sample

Simple Random Sample (SRS)

- Probability of being drawn: R
- R is identical for each individual
- Convenient for model estimation and forecasting
- Very difficult to conduct in practice

Exogenously Stratified Sample (XSS)

- Probability of being drawn: R(x)
- R(x) varies with variables other than i
- May also vary with variables outside the model
- Examples:
 - oversampling of workers for mode choice
 - oversampling of women for baby food choice
 - undersampling of old people for choice of a retirement plan

Endogenously Stratified Sample (ESS)

- Probability of being drawn: R(i,x)
- R(i,x) varies with dependent variables
- Examples:
 - oversampling of bus riders
 - products with small market shares: if SRS, likely that no observation of i in the sample (ex: Ferrari)
 - oversampling of current customers

Pure choice-based sampling

- Probability of being drawn: R(i)
- R(i) varies only with dependent variables
- Special case of ESS

Stratified sampling

In practice, groups are defined, and individuals are sampled randomly within each group.

Example: mode choice

Let's consider each sampling scheme on the following example:

- Exogenous variable: travel time by car
- Endogenous variable: transportation mode

Simple Random Sampling (SRS): one group = population

		Drive alone	Carpooling	Transit	
Travel	≤ 15				
time	>15, ≤ 30				
by car	> 30				

Exogenously Stratified Sample (XSS)

		Drive alone	Carpooling	Transit
Travel	≤ 15			
time	>15, ≤ 30			
by car	> 30			

Pure choice-based sampling

		Drive alone	Carpooling	Transit
Travel	≤ 15			
time	>15, ≤ 30			
by car	> 30			

Endogenously Stratified Sample (ESS)

		Drive alone	Carpooling	Transit
Travel	≤ 15			
time	>15, ≤ 30			
by car	> 30			

If (i, x) belongs to group g, we can write

$$R(i,x) = \frac{H_g N_s}{W_g N}$$

where

- ullet H_g is the fraction of the group corresponding to (i,x) in the sample
- W_g is the fraction of the group corresponding to (i, x) in the population
- N_s is the sample size
- N is the population size

Calculation

- H_g and N_s are decided by the analyst
- W_g can be expressed as

$$W_{g} = \int_{x \in g} \left(\sum_{i \in C_{g}} P(i|x, \theta) \right) p(x) dx$$

which is a function of θ .

Simplification

• If group g contains all alternatives, then

$$\sum_{i \in \mathcal{C}_g} P(i|x,\theta) = 1$$

and $W_g = \int_{x \in g} p(x) dx$ does not depend on θ

 This can happen only if groups are not defined based on the alternatives.

Illustration

Population

Simple random sample (SRS)

Illustration

Population

Exogenously Stratified Sample (XSS)

` /				
x=0	187.5	62.5	250	25%
x=1	637.5	112.5	750	75%
	825	175	1000	
	83%	18%		

Illustration

Population

Choice based stratified sampling

6				
x=0	252.1	168.1	420.2	42%
x=1	252.1 428.6	151.3	579.9	58%
		319.3		
	68%	32%		

Outline

- Introduction
- Sampling strategies
- Estimation: maximum likelihood
 - Exogenous sample maximum likelihood
- Conditional maximum likelihood
 - Logit and choice-based sample
 - MEV and choice-based sample

Estimation

Define s_n as the event of individual n being in the sample

Maximum Likelihood

$$\max_{\theta} \mathcal{L}(\theta) = \sum_{n=1}^{N} \ln f(i_n, x_n | s_n; \theta)$$

The joint probability for an individual to

- be in the sample (s_n)
- be exposed to exogenous variables x_n
- choose the observed alternative (i_n)

is denoted

$$f(i_n, x_n, s_n; \theta)$$

Estimation

Bayes theorem

$$f(i_n, x_n, s_n; \theta) = f(i_n, x_n | s_n; \theta) f(s_n; \theta)$$

= $f(s_n | i_n, x_n; \theta) f(i_n | x_n; \theta) p(x_n).$

$$f(i_n, x_n | s_n; \theta) f(s_n; \theta) = f(s_n | i_n, x_n; \theta) f(i_n | x_n; \theta) p(x_n)$$

- $f(i_n, x_n | s_n; \theta)$: term for the ML
- $f(s_n; \theta) = \sum_{z} \sum_{j \in \mathcal{C}} f(s_n|j, z; \theta) f(j|z; \theta) f(z)$
- $f(s_n|i_n,x_n;\theta)$: probability to be sampled, that is $R(i_n,x_n;\theta)$
- $f(i_n|x_n;\theta)$: choice model $P(i_n|x_n;\theta)$

Contribution to the likelihood function

$$f(i_n, x_n | s_n; \theta) = \frac{R(i_n, x_n; \theta) P(i_n | x_n; \theta) p(x_n)}{\sum_{z} \sum_{i \in \mathcal{C}} R(j, z; \theta) P(j | z; \theta) p(z)}$$

Estimation

Contribution to the likelihood function

$$f(i_n, x_n | s_n; \theta) = \frac{R(i_n, x_n; \theta) P(i_n | x_n; \theta) p(x_n)}{\sum_{z} \sum_{j \in \mathcal{C}} R(j, z; \theta) P(j | z; \theta) p(z)}$$

- In general, impossible to handle
- Namely, p(z) is usually not available

In practice

- It does simplify when the sampling is exogenous
- If not, we use Conditional Maximum Likelihood instead.
 - Case of logit
 - Case of MFV
 - Other models

Exogenous Sample Maximum Likelihood

If the sample is simple or exogenous

$$R(i, x; \theta) = R(x) \quad \forall i, \theta$$

Contribution to the likelihood function

$$f(i_n, x_n | s_n; \theta) = \frac{R(i_n, x_n; \theta) P(i_n | x_n; \theta) p(x_n)}{\sum_{z} \sum_{j \in \mathcal{C}} R(j, z; \theta) P(j | z; \theta) p(z)}$$

$$= \frac{R(x_n) P(i_n | x_n; \theta) p(x_n)}{\sum_{z} \sum_{j \in \mathcal{C}} R(z) P(j | z; \theta) p(z)}$$

$$= \frac{R(x_n) P(i_n | x_n; \theta) p(x_n)}{\sum_{z} R(z) p(z) \sum_{j \in \mathcal{C}} P(j | z; \theta)}$$

$$= \frac{R(x_n) P(i_n | x_n; \theta) p(x_n)}{\sum_{z} R(z) p(z)}$$

Exogenous Sample Maximum Likelihood

Contribution to the likelihood function

$$f(i_n,x_n|s_n;\theta) = \frac{R(x_n)P(i_n|x_n;\theta)p(x_n)}{\sum_{z} R(z)p(z)}$$

Taking the log for the maximum likelihood

$$\ln f(i_n, x_n | s_n; \theta) = \ln P(i_n | x_n; \theta) + \ln R(x_n) + \ln p(x_n) - \ln \sum_{z} R(z) p(z)$$

ullet For the maximization, terms not depending on heta are irrelevant

$$\operatorname{argmax}_{\theta} \sum_{n} \ln f(i_n, x_n | s_n; \theta) = \operatorname{argmax}_{\theta} \sum_{n} \ln P(i_n | x_n; \theta)$$

In practice

Same procedure as for SRS

Outline

- Introduction
- Sampling strategies
- Estimation: maximum likelihood
 - Exogenous sample maximum likelihood
- Conditional maximum likelihood
 - Logit and choice-based sample
 - MEV and choice-based sample

Conditional Maximum Likelihood

Instead of solving

$$\max_{\theta} \sum_{n} \ln f(i_n, x_n | s_n; \theta)$$

we solve

$$\max_{\theta} \sum_{n} \ln f(i_n | x_n, s_n; \theta)$$

CML is consistent but not efficient

Conditional Maximum Likelihood

Bayes theorem

$$f(i_n, x_n, s_n; \theta) = f(i_n | x_n, s_n; \theta) f(s_n | x_n; \theta) p(x_n)$$

= $f(s_n | i_n, x_n; \theta) f(i_n | x_n; \theta) p(x_n).$

$$f(i_n|x_n,s_n;\theta)f(s_n|x_n;\theta)=f(s_n|i_n,x_n;\theta)f(i_n|x_n;\theta)$$

- $f(i_n|x_n, s_n; \theta)$: term for the CML
- $f(s_n|x_n;\theta) = \sum_{j\in\mathcal{C}} f(s_n|j,x_n;\theta) f(j|x_n;\theta)$
- $f(s_n|i_n,x_n;\theta)$: probability to be sampled, that is $R(i_n,x_n;\theta)$
- $f(i_n|x_n;\theta)$: choice model $P(i_n|x_n;\theta)$

Contribution to the conditional likelihood

$$f(i_n|x_n,s_n;\theta) = \frac{R(i_n,x_n;\theta)P(i_n|x_n;\theta)}{\sum_{i\in\mathcal{C}}R(j,x_n;\theta)P(j|x_n;\theta)}$$

CML with logit and choice based stratified sampling

Specific case

Assume now logit and $R(i_n, x_n; \theta) = R(i_n; \theta)$

$$P(i_n|x_n;\theta=\beta) = \frac{e^{V_{i_n}(x_n,\beta)}}{\sum_k e^{V_k(x_n,\beta)}} = \frac{e^{V_{i_n}(x_n,\beta)}}{D} \text{ where } D = \sum_k e^{V_k(x_n,\beta)}.$$

$$f(i_{n}|x_{n}, s_{n}; \theta) = \frac{R(i_{n}; \theta)P(i_{n}|x_{n}; \theta)}{\sum_{j \in \mathcal{C}} R(j; \theta)P(j|x_{n}; \theta)}$$

$$= \frac{DR(i_{n}; \theta)e^{V_{i_{n}}(x_{n}, \beta)}}{D\sum_{j \in \mathcal{C}} R(j; \theta)e^{V_{j}(x_{n}, \beta)}}$$

$$= \frac{e^{V_{i_{n}}(x_{n}, \beta) + \ln R(i_{n}; \theta)}}{\sum_{j \in \mathcal{C}} e^{V_{j}(x_{n}, \beta) + \ln R(j; \theta)}}$$

CML with logit and choice based stratified sampling

Let's define J additional unknown parameters

$$\omega_j = \ln R(j;\theta)$$

Assume that each utility has an ASC, so that

$$V_{i_n}(x_n,\beta) = \tilde{V}_{i_n}(x_n,\beta) + \gamma_i$$

The CML involves

$$f(i_n|x_n,s_n;\theta) = \frac{e^{\tilde{V}_{i_n}(x_n,\beta) + \gamma_i + \omega_i}}{\sum_{j \in \mathcal{C}} e^{\tilde{V}_{j}(x_n,\beta) + \gamma_j + \omega_j}}$$

It is exactly ESML

except that γ_i is replaced by $\gamma_i + \omega_i$

CML with logit and ESS

Property

If the logit model has a full set of constants, ESML yields consistent estimates of all parameters except the constants with Endogenous Sampling Strategy

Example

Choice of pension plan

- i = 0 stay on defined benefit pension plan
- i = 1 switch to defined contribution plan
- x = 1 switching penalty
- x = 0 no switching penalty

Population

	i=0	i=1		
x=0	300000	100000	400000	0.4
x=1	510000	90000	600000	0.6
	810000	190000	1000000	
	0.81	0.19		

Example

Simple model

$$V_0 = 0$$

$$V_1 = \alpha + \beta x$$

$$P(0|x) = \frac{1}{1 + e^{\alpha + \beta x}}, \ \ P(1|x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}} = \frac{1}{1 + e^{-\alpha - \beta x}}$$

Easy to estimate

$$P(1|0) = \frac{1}{1 + e^{-\alpha}}, \quad P(0|0) = 1 - P(1|0) = \frac{e^{-\alpha}}{1 + e^{-\alpha}}$$

Therefore

$$e^{lpha}=rac{P(1|0)}{P(0|0)}, \quad ext{and} \quad lpha=\lnrac{P(1|0)}{P(0|0)}$$

Example

Also

$$P(1|1) = \frac{1}{1 + e^{-\alpha - \beta}}, \quad P(0|1) = 1 - P(1|1) = \frac{e^{-\alpha - \beta}}{1 + e^{-\alpha - \beta}}$$

Therefore

$$e^{lpha+eta}=rac{P(1|1)}{P(0|1)}, \quad e^{eta}=e^{-lpha}rac{P(1|1)}{P(0|1)}$$

and

$$e^{\beta} = \frac{P(0|0)}{P(1|0)} \frac{P(1|1)}{P(0|1)} \quad \text{and} \quad \beta = \ln \left(\frac{P(0|0)}{P(1|0)} \frac{P(1|1)}{P(0|1)} \right)$$

	i=0	i=1		
x=0	300000	100000	400000	40%
x=1	510000	90000	600000	60%
	810000	190000	1000000	
	81%	19%		

$$P(1|0) = 0.25$$
 $\alpha = -1.09861$
 $P(0|0) = 0.75$ $\beta = -0.63599$
 $P(1|1) = 0.15$
 $P(0|1) = 0.85$

SRS:
$$R = 1/1000$$

$$P(1|0) = 0.25$$
 $\alpha = -1.09861$
 $P(0|0) = 0.75$ $\beta = -0.63599$
 $P(1|1) = 0.15$
 $P(0|1) = 0.85$

Retrieve the true parameters

$$P(1|0) = 0.25$$
 $\alpha = -1.09861$
 $P(0|0) = 0.75$ $\beta = -0.63599$
 $P(1|1) = 0.15$
 $P(0|1) = 0.85$

Retrieve the true parameters

Important note

- Although the sampling strategy is exogenous, the market shares in the sample do not reflect the true market shares.
- Omitting an explanatory variable may therefore bias the results
- In this example, a model with only the constant will reproduce the market shares of the sample.

ERS:
$$R(i = 0) = 1/1190$$
, $R(i = 1) = 1/595$

$$P(1|0) = 0.4$$
 $\alpha = -0.40547$
 $P(0|0) = 0.6$ $\beta = -0.63599$
 $P(1|1) = 0.26087$
 $P(0|1) = 0.73913$

Retrieve the true value of β

What happened to α ?

True
$$\alpha$$
 -1.09861
 $\ln R(i=0)$
 -7.08171

 Estim. α
 -0.40547
 $\ln R(i=1)$
 -6.38856

 Diff
 0.693147
 Diff
 0.693147

We have estimated

$$V_0 = 0 + \ln R(i = 0) = -7.08171$$

 $V_1 = \beta x + \alpha + \ln R(i = 1) = \beta x - 1.09861 - 6.38856$
 $= \beta x - 7.487173$

Shift both constants by 7.08171

$$V_0 = 0$$

 $V_1 = \beta x - 0.40547$

What about MEV model?

- Same derivation as for logit
- See Bierlaire, Bolduc & McFadden (2008)

Assume now MEV and $R(i_n, x_n; \theta) = R(i_n; \theta)$

$$P(i_n|x_n;\theta=\beta) = \frac{e^{V_{i_n}(x_n,\beta) + \ln G_{i_n}(\cdot)}}{\sum_k e^{V_k(x_n,\beta) + \ln G_k(\cdots)}} = \frac{e^{V_{i_n}(x_n,\beta) + \ln G_{i_n}(\cdot)}}{D}$$

where $G_k(\cdot) = G_k(e^{V_1}, \ldots, e^{V_J})$.

$$f(i_{n}|x_{n},s_{n};\theta) = \frac{R(i_{n};\theta)P(i_{n}|x_{n};\theta)}{\sum_{j\in\mathcal{C}}R(j;\theta)P(j|x_{n};\theta)}$$

$$= \frac{DR(i_{n};\theta)e^{V_{i_{n}}(x_{n},\beta)+\ln G_{i_{n}}(\cdot)}}{D\sum_{j\in\mathcal{C}}R(j;\theta)e^{V_{j}(x_{n},\beta)+\ln G_{j}(\cdot)}}$$

$$= \frac{e^{V_{i_{n}}(x_{n},\beta)+\ln G_{i_{n}}(\cdot)+\ln R(i_{n};\theta)}}{\sum_{j\in\mathcal{C}}e^{V_{j}(x_{n},\beta)+\ln G_{j}(\cdot)+\ln R(j;\theta)}}$$

Let's define J additional unknown parameters

$$\omega_j = \ln R(j; \theta)$$

The CML involves

$$f(i_n|x_n, s_n; \theta) = \frac{e^{V_{i_n}(x_n, \beta) + \ln G_{i_n}(\cdot) + \omega_{i_n}}}{\sum_{j \in \mathcal{C}} e^{V_{j}(x_n, \beta) + \ln G_{j}(\cdot) + \omega_{j}}}$$

Consequence

- Here, because there are constants inside $G_j(\cdot)$, the parameters ω cannot be "absorbed" by the constants.
- ESML cannot be used
- But CML is not difficult in this case.

MEV and sampling

Claims in the literature (both erroneous)

Koppelman, Garrow and Nelson (2005)

- ESML estimator can also be used for nested logit
- Consistent est. for all parameters but the constants
- Consistent est. of the constants obtained by subtracting $\ln R(i,z)/\mu_{m_i}$

Bierlaire, Bolduc and McFadden (2003)

- ESML estimator can be used for any MEV model
- It provides consistent est. for all parameters except the constants.
- Consistent est. of the constants obtained by subtracting $\ln R(i,z)$

Illustration

Pseudo-synthetic data

- Data base: SP mode choice for future high-speed train in Switzerland (Swissmetro)
- Alternatives:
 - Regular train (TRAIN),
 - Swissmetro (SM), the future high speed train,
 - Oriving a car (CAR).
- Generation of a synthetic population of 507600 individuals

Illustration

Synthetic data

- Attributes are random perturbations of actual attributes
- Assumed true choice model: NL

		Aiternatives			
Param.	Value	TRAIN	SM	CAR	
ASC_CAR	-0.1880	0	0	1	
$\mathtt{ASC_SM}$	0.1470	0	1	0	
B_TRAIN_TIME	-0.0107	travel time	0	0	
B_SM_TIME	-0.0081	0	travel time	0	
B_CAR_TIME	-0.0071	0	0	travel time	
B_COST	-0.0083	travel cost	travel cost	travel cost	

Illustration

Synthetic data: assumed nesting structure

	$\mu_{\it m}$	TRAIN	SM	CAR
NESTA	2.27	1	0	1
NESTB	1.0	0	1	0

Experiment

• 100 samples drawn from the population

Strata	$W_g N_P$	W_{g}	H_{g}	$H_g N_s$	R_{g}
TRAIN	67938	13.4%	60%	3000	4.42E-02
\mathtt{SM}	306279	60.3%	20%	1000	3.26E-03
CAR	133383	26.3%	20%	1000	7.50E-03
Total	507600	1	1	5000	

- Estimation of 100 models
- Report empirical mean and std dev of the estimates

Illustration

		ESML New estimator			or		
	True	Mean	t-test	Std. dev.	Mean	t-test	Std. dev.
ASC_SM	0.1470	-2.2479	-25.4771	0.0940	-2.4900	-23.9809	0.1100
ASC_CAR	-0.1880	-0.8328	-7.3876	0.0873	-0.1676	0.1581	0.1292
BCOST	-0.0083	-0.0066	2.6470	0.0007	-0.0083	0.0638	0.0008
BTIME_TRAIN	-0.0107	-0.0094	1.4290	0.0009	-0.0109	-0.1774	0.0009
BTIME_SM	-0.0081	-0.0042	3.1046	0.0013	-0.0080	0.0446	0.0014
BTIME_CAR	-0.0071	-0.0065	0.9895	0.0007	-0.0074	-0.3255	0.0007
NestParam	2.2700	2.7432	1.7665	0.2679	2.2576	-0.0609	0.2043
S_SM_Shifted	-2.6045						
S_CAR_Shifted	-1.7732				-1.7877	-0.0546	0.2651
ASC_SM+S_SM	-2.4575				-2.4900	-0.2958	0.1100

Summary

- Except in very specific cases, ESML provides biased estimates for non-logit MEV models.
- Due to the logit-like form of the MEV model, a new simple estimator has been proposed.
- It allows to simply correct for selection bias.
- It is actually possible to estimate the selection bias from the data.

Weighted Exogenous Sample Maximum Likelihood

- Manski and Lerman (1977)
- Assumes that R(i,x) is known
- ullet Equivalently, assume that H_g and W_g are known for each group as

$$R(i,x) = \frac{H_g N_s}{W_g N}$$

Solution of

$$\max_{\theta} \mathcal{L}(\theta) = \sum_{n=1}^{N} \frac{1}{R(i_n, x_n)} \ln P(i_n | x_n; \theta)$$

- This is a weighted version of the ESML
- In Biogeme, simply define weights

Summary

- With SRS and XSS: use ESML
 - $\max_{\theta} \sum_{n} \ln P(i_n | x_n; \theta)$
 - Classical procedure, available in most packages
- With choice-based sampling and logit: use ESML and correct the constants
- With choice-based sampling and MEV: estimate the bias from data
 - Require a specific procedure
 - Available in Biogeme
- General case: use WESML

