EPFL ENAC TRANSP-OR **Prof. M. Bierlaire**

Fall 2018

Mathematical Modeling of Behavior

HOMEWORK WEEK 4 (Solution)

In a route choice case study, the utility functions are defined as follows:

$$U_1 = ASC_1 + \beta_{length} \cdot length_1 + \varepsilon_1$$

$$U_2 = ASC_2 + \beta_{length} \cdot length_2 + \varepsilon_2$$
(1)

where alternatives 1 and 2 represent different routes, ASC_1 , ASC_2 and β_{length} are parameters to be estimated and length_i, $i \in \{1, 2\}$ is the length of each route in kilometers.

The estimation results of a binary logit model, where ASC_1 has been normalized to zero, are shown in the first column of the following table. The second column corresponds to the same specification where ASC_2 has been normalized to zero:

	Logit 1	Logit 2
ASC_1	0	X
ASC_2	-2	0
β_{length}	10	У

Perform the following tasks:

1. Replace x and y in the table by the value of the corresponding parameter.

Solution: x = 2, y = 10.

2. What are the distributions of ε_1 , ε_2 and $\varepsilon_1 - \varepsilon_2$?

Solution: ε_1 , ε_2 are the extreme value distributions: $\varepsilon_1 \sim \text{EV}(0, \mu)$, $\varepsilon_2 \sim \text{EV}(0, \mu)$, which are independent with the same scale parameter μ (i.i.d.); $\varepsilon_1 - \varepsilon_2$ follows a logistic distribution: $\varepsilon_1 - \varepsilon_2 \sim \text{Logistic}(0, \mu)$.

mpp/yo/tr