Lab III: Introduction to Biogeme

Meritxell Pacheco Yuki Oyama, Thibaut Richard

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

October 2, 2018

Outline

Installation of Biogeme

- Biogeme
- Lab computers
- Download Biogeme
- e How does Biogeme work?
 - How to invoke Biogeme
 - Data file
 - Model file
- Today's lab
 - Case study (binary logit)
 - Reading and modifying files

MPP, YO, TR (TRANSP-OR)

Introduction

三日 のへの

- (E

Installation of Biogeme

BIOGEME

MPP, YO, TR (TRANSP-OR)

Introduction

October 2, 2018 3 / 23

EL SOCO

- Created by Michel Bierlaire
- State of the art software for estimating models in the field of discrete choice analysis
- Open source
- All models presented in this course can be estimated with Biogeme
- Webpage: http://biogeme.epfl.ch
- Remark: We will use the version of Biogeme called Pythonbiogeme

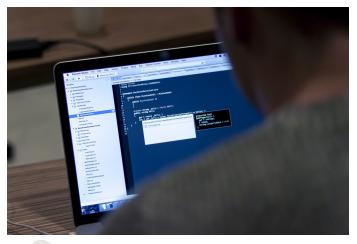
Lab computers

Programs (1)	
Diogeme 🔁	
Control Panel (4)	
n View devices and printers	
🔁 How to add new hardware	
Update device drivers	
₽ See more results	
bio	Log off

- Biogeme is already installed
- Look for it and click on it

Download Biogeme on your own computer

- Download the program from the Install tab
- Follow the instructions related to the OS of your computer

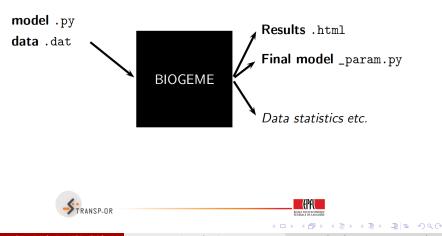

How does the interface look like?

- Windows executable: GUI version
- Mac OS: terminal

(None)	fication file		ß
			_
Data file —			
(None)			£
le viewer			
Activate	Off		
g window			
Activate	011		

How does Biogeme work?

MPP, YO, TR (TRANSP-OR)


Introduction

Biogeme files

- Biogeme reads:
 - a file containing the model specification model.py
 - a file containing the data data.dat
- Biogeme automatically generates:
 - A file containing the results of the maximum likelihood estimation: model_param.py
 - The same file in HTML format: model.html

How does Biogeme work?

MPP, YO, TR (TRANSP-OR)

Introduction

October 2, 2018 10 / 23

How to invoke Biogeme? (Windows)

(None)		۵
ata file		
(None)		۵
viewer Activate	011	
vindow tivate	OFF	

Load the .py file in the Model file tab
Load the .dat file in the Data file tab
Press Apply

How to invoke Biogeme? (Mac OS, Linux)

- Use the terminal
- Access the folder where you have the model and the data files
- Type pythonbiogeme model data.dat
 - The name of the model file (without the extension)
 - The name of the data file (with the extension)

Data file (1)

- File extension .dat
- It contains the data, what we call observations
- One observation per row
- First row contains column (variable) names
- Each row must contain a choice indicator
- Example: Netherlands transportation mode choice data
 - Choice between rail and car
 - 228 observations

Data file (1)

- File extension .dat
- It contains the data, what we call observations
- One observation per row
- First row contains column (variable) names
- Each row must contain a choice indicator
- Example: Netherlands transportation mode choice data
 - Choice between rail and car
 - 228 observations

Data file (2)

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

MPP, YO, TR (TRANSP-OR)

October 2, 2018 15 / 23

Data file (3)

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
	Unique	identifier of	observations		
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

MPP, YO, TR (TRANSP-OR)

Data file (4)

netherlands.dat

	\frown				
id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
		Choice indic	cator, 0: car	and 1: train	n
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

MPP, YO, TR (TRANSP-OR)

NSP-OR

Model file (1)

- File extension .py
- Must be consistent with the data file
- Contains deterministic utility specifications, model type etc.
- Example: Netherlands transportation mode choice data
 - Travel times and travel costs are used as explanatory variables
 - The deterministic utility specifications are

$$\begin{array}{lcl} V_{\mathsf{car}} & = & \mathsf{ASC}_{\mathsf{car}} + \beta_{\mathsf{cost}}\mathsf{cost}_{\mathsf{car}} + \beta_{\mathsf{time}}\mathsf{time}_{\mathsf{car}} \\ V_{\mathsf{rail}} & = & \beta_{\mathsf{cost}}\mathsf{cost}_{\mathsf{rail}} + \beta_{\mathsf{time}}\mathsf{time}_{\mathsf{rail}} \end{array}$$

EL SOCO

18 / 23

October 2, 2018

Model file (2)

- Binary logit: binary_generic_NL.py (Netherlands case study)
- Appendix: different parts of the .py file and the obtained results

Today's lab

MPP, YO, TR (TRANSP-OR)

Introduction

October 2, 2018 20 / 23

Binary Logit (the Netherlands case study)

- Open the instructions file 03Exercises2018.pdf (under Instructions)
- Oownload the files for this case study (under Case study) and copy them in a directory of your choice (e.g., Desktop)
 - binary_generic_NL.py (model file)
 - Binary_Netherlands_2018.pdf (description file)
- The dataset (and its description) can be found in http://transp-or.epfl.ch/discretechoice/data.html
- Go through the .py file with the help of the description file
- Sun the .py file with Biogeme
- Open the generated .html file and interpret the results
- Overlap other model specifications following the instructions file

How can we read and modify files?

- GNU Emacs, TextEdit (Mac), Xcode (Mac), Wordpad (Windows), Notepad++ (Windows)
- Notepad (Windows) should not be used!

Appendix

Model file: parameters (binary_generic_NL.py)

```
#Parameters to be estimated
#Arguments:
#
       Name for report. Typically, the same as the variable
    1
    2 Starting value
#
#
    3 Lower bound
#
    4 Upper bound
#
    5 0: estimate the parameter, 1: keep it fixed
ASC_CAR = Beta('ASC_CAR', 0, -100, 100, 0)
ASC_RAIL = Beta('ASC_RAIL', 0, -100, 100, 1)
BETA_COST = Beta('BETA_COST', 0, -100, 100, 0)
BETA_TIME = Beta('BETA_TIME', 0, -100, 100, 0)
```


1/5

Model file: expressions (binary_generic_NL.py)

```
#Define here arithm. expressions that are not
#directly available from data
one = DefineVariable('one',1)
rail_time = DefineVariable('rail_time',( rail_ivtt + rail_acc_time )
+ rail_egr_time )
car_time = DefineVariable('car_time', car_ivtt + car_walk_time )
rate_G2E = DefineVariable('rate_G2E', 0.44378022)
```

car_cost_euro = DefineVariable('car_cost_euro', car_cost * rate_G2E)
rail_cost_euro = DefineVariable('rail_cost_euro', rail_cost * rate_G2E)

Model file: utilities (binary_generic_NL.py)

```
#Utility functions
Car = ASC_CAR * one + BETA_COST * car_cost + BETA_TIME * car_time
Rail = ASC_RAIL * one + BETA_COST * rail_cost + BETA_TIME * rail_time
#Which utility functions corresponds to each value of choice
#in the data file
V = \{0: Car, 1: Rail\}
#Availability conditions for each alternative
av = \{0: one, 1: one\}
#Excluded observations
BIOGEME_OBJECT.EXCLUDE = sp != 0
                                                                                                                                                                                                                                                                     < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ 
    MPP, YO, TR (TRANSP-OR)
                                                                                                                                                                                   Introduction
                                                                                                                                                                                                                                                                                                                          October 2, 2018
                                                                                                                                                                                                                                                                                                                                                                                                     3 / 5
```

Model file: estimation, output (binary_generic_NL.py)

```
#Loglikelihood:
loglik = bioLogLogit(V,av,choice)
#Defines an iterator on the data
rowIterator('obsIter')
#Defines the likelihood function for the estimation
BIOGEME_OBJECT.ESTIMATE = Sum(loglik,'obsIter')
#This is the optimization algorithm used (to compute maximum likelihood)
BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm'] = "CFSQP"
```

```
#Print some statistics:
nullLoglikelihood(av,'obsIter')
choiceSet = [0,1]
cteLoglikelihood(choiceSet,choice,'obsIter')
availabilityStatistics(av,'obsIter')
BIOGEME_OBJECT.FORMULAS['Car utility'] = Car
BIOGEME_OBJECT.FORMULAS['Rail utility'] = Rail
```

MPP, YO, TR (TRANSP-OR)

▲冊 ▲ ● ▶ ▲ ● ▶ ● ■ ■ ● ● ●

October 2, 2018

4 / 5

Output:.html file (binary_generic_NL.py)

Estimation report

Number of estimated parameters:] Sample size: 228 Excluded observations: 1511 Tait (og likelihood: -158.038 Final log likelihood: -223.133 Likelihood ratio test fort be init. model: 0.609 Rho-square for the init. model: 0.202 Rho-square for the init. model: 0.202 Final gradient norm: +4.941=-05 Final gradient norm: +4.941=-05 Tearations: 10 Deta processing time: 00:00 Kun time: 00:00 Kun time: 00:00

Estimated parameters

Click on the headers of the columns to sort the table [Credits]

Name	Value	Std err	t-test	p-value	Robust Std err	Robust t-test	p-value
ASC_CAR	-0.798	0.270	-2.95	0.00	0.275	-2.90	0.00
BETA_COST	-0.0499	0.0103	-4.85	0.00	0.0107	-4.67	0.00
BETA_TIME	-1.33	0.344	-3.86	0.00	0.354	-3.75	0.00

Correlation of coefficients

Click on the headers of the columns to sort the table [Credits]

Coefficient1	Coefficient2	Covariance	Correlation	t-test	p-value	0	Rob. cov.	Rob. corr	Rob. t-test	p-value
ASC_CAR	BETA_TIME	0.0455	0.491	1.67	0.09	٠	0.0464	0.476	1.60	0.11
ASC_CAR	BETA_COST	0.00192	0.693	-2.84	0.00	0	0.00210	0.713	-2.79	0.01
BETA_COST	BETA_TIME	0.000295	0.0833	3.72	0.00		0.000311	0.0822	3.61	0.00

Smallest singular value: 6.79119

MPP, YO, TR (TRANSP-OR)

Introduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □