Forecasting Aggregation

Michel Bierlaire

Introduction to choice models

Simulated choice

- ▶ For each observation, draw *R* times from the choice model.
- ▶ Define $\hat{y}_{inr} = 1$ if alternative *i* has been generated by draw *r*, 0 otherwise.
- Approximation:

$$P_n(i|x_n;\theta) \approx \frac{1}{R} \sum_{i=1}^R \widehat{y}_{inr}.$$

Warning

It is invalid to select the alternative with the highest probability.

Aggregate market shares

Number of individuals choosing alternative i

$$N(i) = \frac{1}{R} \sum_{n=1}^{N} \sum_{i=1}^{R} \widehat{y}_{inr}.$$

Share of the population choosing alternative i

$$N(i) = \frac{1}{N} \frac{1}{R} \sum_{i=1}^{N} \sum_{i=1}^{R} \widehat{y}_{inr}.$$

For each *r*

Population		Total			
	1	2		J	Total
1	\widehat{y}_{11r}	\widehat{y}_{21r}	• • •	\widehat{y}_{J1r}	1
2	\widehat{y}_{12r}	\widehat{y}_{22r}	• • •	ŷ _{J2r}	1
:	:	:	:	:	:
N	\widehat{y}_{1Nr}	ŷ _{2Nr}		\widehat{y}_{JNr}	1
Total	N(1)	N(2)	• • •	N(J)	N

In practice

Population	Draw				
Горигастоп	1	2	• • •	R	
1	i_{11}	i_{12}	• • •	i_{1R}	
2	i_{21}	<i>i</i> ₂₂	• • •	i_{2R}	
:	:	:	:	:	
N	i_{N1}	i_{N2}	• • •	i _{NR}	