Choice with multiple alternatives — 5.2
Specification of the deterministic part

Michel Bierlaire

Box-Cox transforms

The Box-Cox transform of a positive variable x, introduced by Box and
Cox (1964), is defined as
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so that z(\) is continuous [Verify|. It can be embedded in the specification
of a utility function:

where both 8y and A\ are estimated from data. Such a specification is not
linear-in-parameters. Its flexibility allows to let the data tell if the variable
is involved in a linear way (A = 1), a logarithmic way (A = 0) or as a power
law.

If the variable = may take negative values, Box and Cox (1964) propose
to shift it before the transform is applied:
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where o > —zx.



There are other ways to impose the positivity of the argument of the
transform. For instance, Manly (1976) suggests to use an exponential:
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while John and Draper (1980) propose to use the absolute value:
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A more complex transform has been proposed by Yeo and Johnson (2000):
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Plenty of references are available in the literature. We refer the reader to
Sakia (1992) for a review, and to Zarembka (1990) for a discussion in terms
of model specification.
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