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Output of the estimation

We explain here the various outputs from the maximum likelihood esti-
mation procedure.

Solution of the maximum likelihood estimation

The main outputs of the maximum likelihood estimation procedure are

• the parameter estimates β̂,

• the value of the log likelihood function at the parameter estimates L(β̂).

Most estimation software packages provide additional information after the
estimation, in order to help appreciating the quality of the results. We sum-
marize the most common ones here.

Variance-covariance matrix of the estimates

In addition to play a role in the optimization algorithm, the second deriva-
tives matrix of the log likelihood function ∇2L(β) is also used to compute an
estimate of the variance-covariance matrix of the parameter estimates, from
which standard errors, t statistics and p values are generated.

Under relatively general conditions, the asymptotic variance-covariance
matrix of the maximum likelihood estimates is given by the Cramer-Rao
bound

− E
[
∇2L(β)

]
−1

=

{
−E

[
∂2L(β)

∂β∂βT

]}
−1

. (1)
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From the second order optimality conditions, this matrix is negative def-
inite if the local maximum is unique, which is the algebraic equivalent of the
local strict concavity of the log likelihood function.

Since we do not know the actual values of the parameters at which to
evaluate the second derivatives, or the distribution of xin and xjn over which
to take their expected value, we estimate the variance-covariance matrix by
evaluating the second derivatives at the estimated parameters β̂ and the
sample distribution of xin and xjn instead of their true distribution. Thus
we use

E

[
∂2L(β)

∂βk∂βm

]
≈

N∑

n=1

[
∂2 (yin lnPn(i) + yjn lnPn(j))

∂βk∂βm

]

β=β̂

, (2)

as a consistent estimator of the matrix of second derivatives. Denote this
matrix as Â. Therefore, an estimate of the Cramer-Rao bound (1) is given
by

Σ̂CR

β = −Â−1. (3)

If the matrix Â is negative definite then −Â is invertible and the Cramer-Rao
bound is positive definite. Note that this may not always be the case, as it
depends on the model and the sample.

Another consistent estimator of the (negative of the) second derivatives
matrix can be obtained by the matrix of the cross-products of first derivatives
as follows:

− E

[
∂2L(β)

∂β∂βT

]
≈

n∑

n=1

∇Ln(β̂)∇Ln(β̂)
T = B̂, (4)

where
∇Ln(β̂) = ∇(yin lnPn(i) + yjn lnPn(j)) (5)

is the gradient vector of the log likelihood of observation n. As the gradient
∇Ln(β̂) is a column vector of dimension K×1, and its transpose ∇Ln(β̂)

T is
a row vector of size 1×K, the product ∇Ln(β̂)∇Ln(β̂)

T appearing for each
observation n in (4) is a rank one matrix of size K ×K. The approximation
B̂ is employed by the BHHH algorithm (Berndt et al., 1974). It can also
provide an estimate of the variance-covariance matrix:

Σ̂BHHH

β = B̂−1, (6)
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although this estimate is rarely used. Instead, B̂ is used to derive a third
consistent estimator of the variance-covariance matrix of the parameters,
defined as

Σ̂R

β = (−Â)−1 B̂ (−Â)−1 = Σ̂CR

β (Σ̂BHHH

β )−1 Σ̂CR

β . (7)

It is called the robust estimator, or sometimes the sandwich estimator,
due to the form of equation (7).

When the true likelihood function is maximized, these estimators are
asymptotically equivalent, and the Cramer-Rao bound (1) should be pre-
ferred (Kauermann and Carroll, 2001). When other consistent estimators
are used, different from the maximum likelihood, the robust estimator (7)
must be used (White, 1982).

Standard errors

Consider an estimate β̂k of the parameter βk, and consider Σ̂β an estimate of
the variance-covariance matrix of the estimates (typically, the Rao-Cramer
bound or the robust estimator, as described above). The standard error of
the parameter is defined as

σk =

√
Σ̂β(k, k), (8)

where Σ̂β(k, k) is the kth entry of the diagonal of the matrix Σ̂β.

t statistics

Consider an estimate β̂k of the parameter βk, and σk its standard error. Its
t statistic is defined as

tk =
β̂k

σk

. (9)

It is typically used to test the null hypothesis that the true value of the
parameter is zero. This hypothesis can be rejected with 95% of confidence if

|tk| ≥ 1.96. (10)
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p value

Consider an estimate β̂k of the parameter βk, and tk its t statistic. The p

value is calculated as
pk = 2(1− Φ(tk)), (11)

where Φ(·) is the cumulative density function of the univariate standard
normal distribution.

It conveys the exact same information as the t statistic, presented in a
different way. It is the probability to get a t statistic at least as large (in
absolute value) as the one reported, under the null hypothesis that βk = 0.
The null hypothesis can be rejected with level of confidence 1− pk.

Goodness of fit

Unlike linear regression, there are several measures of goodness of fit. None
of them can be used in an absolute way. They can only be used to compare
two models.

Clearly, an obvious measure is the log likelihood itself. It is common to
compare it with a benchmark model. For instance, consider a trivial model
with no parameter, associating a probability of 50% with each of the two
alternatives:

Pn(i) = Pn(j) =
1

2
.

The log likelihood of the sample is therefore

L(0) = log(
1

2N
) = −N log(2),

where N is the number of observations. It can be used to calculate the
likelihood ratio statistic:

−2(L(0)− L(β̂)).

It is called as such because it is the logarithm of the ratio of the respective
likelihood values.

The statistic is used to test the null hypothesis H0 that the estimated
model is equivalent to the equal probability model. Under H0, −2(L(0) −

L(β̂)) is asymptotically distributed as χ2 with K degrees of freedom.
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It can also be used to compute a normalized measure of goodness of fit:

ρ2 = 1−
L(β̂)

L(0)
. (12)

Such a measure has been derived to somehow mimic the R2 in linear regres-
sion. However, in this case, it is not the square of anything. If the estimated
model has the same log likelihood as the equal probability model, ρ2 = 0. If
the estimated model perfectly fits the data, that is if L(β̂) = 0, then ρ2 = 1.
As mentioned above, the value itself cannot be interpreted, and it must be
used only to compare two models. In particular, unlike linear regression, it
is possible to have a good model with a low value of ρ2, and a bad model
with a high value.

An important limitation of this goodness of fit measure is that it is mono-
tonic in the number of parameters of the model. It means that ρ2 mechani-
cally increases each time an additional variable is added to the model, even
if this variable does not explain anything. Therefore, the following corrected
measure is often preferred:

ρ̄2 = 1−
L(β̂)−K

L(0)
.
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