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Maximum likelihood estimation

We now estimate the values of the unknown parameters β1,. . . ,βK from
a sample of observations drawn at random from the population. Each obser-
vation of this sample consists of the following:

1. An indicator variable defined as

yin =

{
1 if individual n chose alternative i,
0 if individual n chose alternative j.

2. Two vectors of explanatory variables xin = h(zin, Sn) and xjn = h(zjn, Sn),
each containing K values.

For notational convenience, we also define yjn = 1− yin.
As an example, consider a transportation mode choice problem (train or

car), where the utility functions are specified as reported in Table 1. Consider
also the sample of 3 individuals presented in Table 2.

Using the above notations, we have

yi1 = 1, yj1 = 0, yi2 = 0, yj2 = 1, yi3 = 0, yj3 = 1.

The values of the variables x are:

xi1= (1 5 0 1.17 0 0 1 0 0),
xj1= (0 40 0 0 2.5 0 0 0 0),
xi2= (1 8.33 2 0 0 0 0 1 1),
xj2= (0 7.8 0 0 1.75 1 0 0 0),
xi3= (1 3.2 0 2.55 0 0 0 1 0),
xj3= (0 40 0 0 2.67 0 0 0 0).
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Car Train
β1 1 0
β2 cost of trip by car cost of trip by train
β3 travel time by car (hours) if

trip purpose is work, 0 other-
wise

0

β4 travel time by car (hours) if
trip purpose is not work, 0 oth-
erwise

0

β5 0 travel time by train (hours)
β6 0 1 if first class is preferred, 0

otherwise
β7 1 if commuter is male, 0 other-

wise
0

β8 1 if commuter is the main
earner in the family, 0 other-
wise

0

β9 1 if commuter had a fixed ar-
rival time, 0 otherwise

0

Table 1: Specification table of the binary mode choice model

The choice model is

Pn(i) =
eVin

eVin + eVjn
, (1)

where

Vin =
K∑

k=1

βkxink (2)

Vjn =
K∑

k=1

βkxjnk. (3)

Given a sample of N observations, we want to find estimates β̂1, . . . , β̂K

that have some or all of the desirable properties of statistical estimators. We
consider in detail the most widely used estimation procedure — maximum
likelihood. The maximum likelihood estimators have the following desired
properties:
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Individual 1 Individual 2 Individual 3
Train cost 40.00 7.80 40.00
Car cost 5.00 8.33 3.20

Train travel time 2.50 1.75 2.67
Car travel time 1.17 2.00 2.55

Gender M F F
Trip purpose Not work Work Not work

Class Second First Second
Main earner No Yes Yes
Arrival time Variable Fixed Variable

Choice Train Car Car

Table 2: A sample of three individuals

1. They are consistent in the sense of convergence to true values as sample
size gets larger.

2. They are asymptotically normally distributed in the sense of the Cen-
tral Limit Theorem.

3. They are asymptotically efficient, and hence their variance attains the
Cramer-Rao lower bound.

The maximum likelihood estimation procedure is conceptually quite straight-
forward. It consists in identifying the value of the unknown parameters such
that the joint probability of the observed choices as predicted by the model
is the highest possible. This joint probability is called the likelihood of the
sample. And it is a function of the parameters of the model.

In the above example, the likelihood of the sample of 3 individuals is
calculated as follows:

• individual 1 has chosen the car, and this choice is predicted by the
model with probability P1(i),

• individual 2 has chosen the train, and this choice is predicted by the
model with probability P2(j),

• individual 3 has chosen the train, and this choice is predicted by the
model with probability P3(j).
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Consequently, the probability that the model predicts all three observations
is

L∗(β1, . . . , β9) = P1(i)P2(j)P3(j). (4)

If this value is calculated for βk = 0, k = 1, . . . , K, we obtain

L∗ =
1

2
·
1

2
·
1

2
= 0.125. (5)

If this value is calculated for the values of

β = (3.04,−0.0527,−2.66,−2.22,−0.576, 0.961,−0.850, 0.383,−0.624),

we have
L∗ = 0.947 · 0.924 · 0.225 = 0.197. (6)

This value of the likelihood is higher. But we do not know if it is the highest
possible.

This can be generalized to a sample of N observations assumed to be
independently drawn from the population. As discussed above, the likeli-
hood of the sample is the product of the likelihoods (or probabilities) of the
individual observations. It is defined as follows:

L∗(β1, β2, . . . , βK) =
N∏

n=1

Pn(i)
yinPn(j)

yjn , (7)

where Pn(i) and Pn(j) are functions of β1,. . . ,βK . Note that each factor
represents the choice probability of the chosen alternative. Indeed,

Pn(i)
yinPn(j)

yjn =

{
Pn(i) if yin = 1, yjn = 0
Pn(j) if yin = 0, yjn = 1.

It is more convenient to analyze the logarithm of L∗, denoted as L and called
the log likelihood, because the logarithm of a product of elements is easier to
manipulate, being equal to the sum of the logarithms of the elements. More-
over, the value of the likelihood is always between 0 and 1, and usually very
small, especially when N is large. The range of values of the log likelihood
is much larger, as it can take any negative value (from −∞ to 0) and can be
represented better in computers. The log likelihood is written as follows:

L(β1, . . . , βK) =
N∑

n=1

(yin lnPn(i) + yjn lnPn(j)). (8)
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where β is the vector with entries β1, . . . , βK . We are looking for estimates
β̂1, β̂2,. . . ,β̂K that solve

maxL(β̂) = L(β̂1, β̂2, . . . , β̂K), (9)

where β̂ is the vector with entries β̂1, β̂2, . . . , β̂K . The optimization problem
is solved using dedicated algorithms.

If a solution exists, it must satisfy the necessary first order conditions:

∂L

∂βk

(β̂) =
N∑

n=1

(
yin

∂Pn(i)/∂βk

Pn(i)
+ yjn

∂Pn(j)/∂βk

Pn(j)

)
= 0, k = 1, . . . , K, (10)

or in vector form
∂L

∂β
(β̂) = 0. (11)

The term ∂L(β̂)/∂β is the vector of first derivatives of the log likelihood
function with respect to the unknown parameters, evaluated at the estimated
value of the parameters. Each entry k of the vector ∂L(β̂)/∂β represents the
slope of the multi-dimensional log likelihood function along the corresponding
kth axis. If β̂ corresponds to a maximum of the function, all these slopes
must be zero, justifying (10).

Solving the optimization problem requires an iterative procedure. It
starts with arbitrary values for the parameters (provided by the analyst,
or all set to zero if no value can be guessed). If the first derivatives of the log
likelihood function are zero, a solution has been found. If not, they provide
information about the slope of the function, and a direction of “hill-climbing”
can be identified. This direction is followed for a while, until a new set of
values is found, corresponding to a higher log likelihood. The process is
restarted from this new set of values, until convergence to the maximum is
reached.

A family of algorithms commonly used in practice is called Newton’s
method. At each iteration ℓ, a quadratic model of the log likelihood function
is built around the current iterate β(ℓ). This quadratic model is such that
the value of the model and of its first and second derivatives are the same at
β(ℓ) as the log likelihood function:

m(β; β(ℓ)) = L(β(ℓ))+ (β−β(ℓ))T∇L(β(ℓ))+
1

2
(β−β(ℓ))T∇2L(β(ℓ))(β−β(ℓ)),

(12)
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where ∇L(β(ℓ)) is the gradient, that is the vector of the first derivatives of
the log likelihood function evaluated at β(ℓ), and ∇2L(β(ℓ)) is the matrix of
the second derivatives of the log likelihood function evaluated at β(ℓ). The
kth entry of L(β(ℓ)) is ∂L(β(ℓ))/∂βk, and the entry in the kth row and the
mth column of ∇2L(β(ℓ)) is

∂2L(β(ℓ))

∂βk∂βm

. (13)

The approximation of the log likelihood function by the quadratic model
is illustrated in Figure 1 for a log likelihood function with only one parameter,
where both the log likelihood function and the quadratic model at β(ℓ) are
displayed. Note that both functions coincide at β(ℓ), and have the same slope
(first derivative) and curvature (second derivative) at that point. The next
iterate is selected as the value of the parameters maximizing the quadratic
model, that is

β(ℓ+1) = β(k) −∇2L(β(ℓ))−1∇(β(ℓ)), (14)

as illustrated in Figures 1 and 2 for two successive iterations.
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Figure 1: Illustration of Newton’s method for optimization

It is numerically obtained by solving the system of linear equations

∇2L(β(ℓ))d = −∇(β(ℓ)), (15)
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to obtain the direction d, and then calculating

β(ℓ+1) = β(ℓ) + d. (16)

The procedure continues until the gradient is sufficiently close to zero, de-
pending on the level of precision that is required. In practice, it happens
when the norm of the gradient is below a user-specified threshold Γ, that is

∥∥∥∥
∂L(β)

∂β

∥∥∥∥ =

√√√√∑

k

(
∂L(β)

∂βk

)2

≤ Γ.

A typical value for Γ is 10−6.
Actually, the method described above is not guaranteed to converge, and

variants involving a scaled version of d have to be used, that is

β(ℓ+1) = β(ℓ) + αd, α > 0. (17)

We refer the reader to Bierlaire (2015) for more details on optimization al-
gorithms.
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Figure 2: Illustration of Newton’s method for optimization: second iteration
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