Latent variables

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

Outline

- Motivation
- Modeling latent concepts
- Stimation
- Case studies
- Conclusion

Motivation

Rationality?

- Standard random utility assumptions are often violated.
- Factors such as attitudes, perceptions, knowledge are not reflected.

Example: pain lovers

Kahneman, D., Fredrickson, B., Schreiber, C.M., and Redelmeier, D., When More Pain Is Preferred to Less: Adding a Better End, Psychological Science, Vol. 4, No. 6, pp. 401-405, 1993.

- Short trial: immerse one hand in water at 14° for 60 sec.
- Long trial: immerse the other hand at 14° for 60 sec, then keep the hand in the water 30 sec. longer as the temperature of the water is gradually raised to 15° .
- Outcome: most people prefer the long trial.
- Explanation:
 - duration plays a small role
 - the peak and the final moments matter

Example: The Economist

Subscription to The Economist

Web only	@ \$59
Print only	@ \$125
Print and web	@ \$125

Example: The Economist

Subscription to The Economist

Experiment 1	Experiment 2	
Web only @ \$59	Web only @ \$59	
Print only @ \$125		
Print and web @ \$125	Print and web @ \$125	

Example: The Economist

Subscription to The Economist

	Experiment 1 Experiment 2		
16	Web only @ \$59	Web only @ \$59	68
0	Print only @ \$125		
84	Print and web @ \$125	Print and web @ \$125	32

Source: Ariely (2008)

- Dominated alternative
- According to utility maximization, should not affect the choice
- But it affects the perception, which affects the choice.

Example: good or bad wine?

Choose a bottle of wine...

	Experiment 1	Experiment 2
1	McFadden red at \$10	McFadden red at \$10
2	Nappa red at \$12	Nappa red at \$12
3		McFadden special reserve
		pinot noir at \$60
	Most would choose 2	Most would choose 1

Context plays a role on perceptions

Example: live and let die

Population of 600 is threatened by a disease. Two alternative treatments to combat the disease have been proposed.

	to compat the discuse have been proposed.		
Experiment 1 # resp. = 152	Experiment 2 # resp. = 155		
Treatment A: 200 people saved	Treatment C: 400 people die		
Treatment B: 600 people saved with prob. 1/3 0 people saved with prob. 2/3	Treatment D: 0 people die with prob. 1/3 600 people die with prob. 2/3		

Example: live and let die

Population of 600 is threatened by a disease. Two alternative treatments to combat the disease have been proposed.

	Experiment 1 # resp. = 152	Experiment 2 # resp. = 155	
72%	Treatment A: 200 people saved	Treatment C: 400 people die	22%
28%	Treatment B: 600 people saved with prob. 1/3 0 people saved with prob. 2/3	Treatment D: 0 people die with prob. 1/3 600 people die with prob. 2/3	78%

Source: Tversky & Kahneman (1986)

Example: to be free

Choice between a fine and a regular chocolate

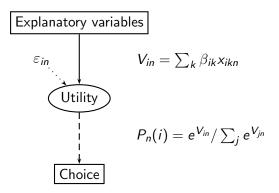
	Experiment 1	Experiment 2
Lindt	\$0.15	\$0.14
Hershey	\$0.01	\$0.00
Lindt chosen	73%	31%
Hershey chosen	27%	69%

Source: Ariely (2008) Predictably irrational, Harper Collins.

Outline

- Motivation
- Modeling latent concepts
- Estimation
- 4 Case studies
- Conclusion

Latent concepts


Latent

- **latent**: potentially existing but not presently evident or realized (from Latin: lateo = lie hidden)
- Here: not directly observed
- Standard models are already based on a latent concept: utility

Drawing convention

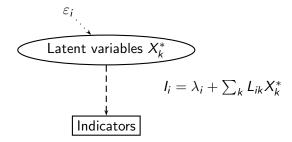
- Latent variable
- Observed variable
- structural relation:
- measurement: ____
- errors:

Random utility

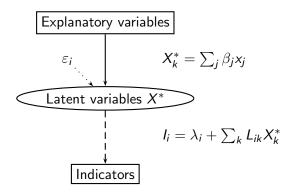
Attitudes

Measuring attitudes

- Psychometric indicators
- Example: attitude towards the environment.
- For each question, response on a scale: strongly agree, agree, neutral, disagree, strongly disagree, no idea.
 - The price of oil should be increased to reduce congestion and pollution
 - More public transportation is necessary, even if it means additional taxes
 - Ecology is a threat to minorities and small companies.
 - People and employment are more important than the environment.
 - I feel concerned by the global warming.
 - Decisions must be taken to reduce the greenhouse gas emission.


Indicators

Model specification

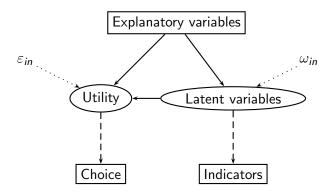

Indicators cannot be used as explanatory variables. Mainly two reasons:

- Measurement errors
 - Scale is arbitrary and discrete
 - People may overreact
 - Justification bias may produce exaggerated responses
- No forecasting possibility
 - No way to predict the indicators in the future

Factor analysis

Measurement equation

Measurement equation

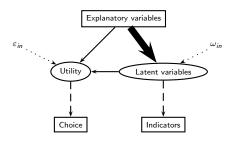

Continuous model: regression

$$I = f(X^*; \beta) + \varepsilon$$

Discrete model: thresholds

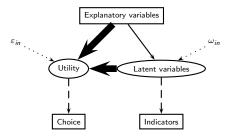
$$I = \begin{cases} 1 & \text{if } -\infty < X^* \le \tau_1 \\ 2 & \text{if } \tau_1 < X^* \le \tau_2 \\ 3 & \text{if } \tau_2 < X^* \le \tau_3 \\ 4 & \text{if } \tau_3 < X^* \le \tau_4 \\ 5 & \text{if } \tau_4 < X^* \le +\infty \end{cases}$$

Choice model



Outline

- Motivation
- 2 Modeling latent concepts
- Stimation
- 4 Case studies
- Conclusion

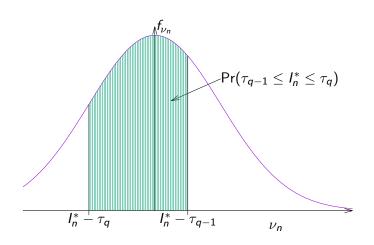

Structural equations

$$X_n^* = h(X_n; \lambda) + \omega_n, \quad \omega_n \sim N(0, \Sigma_\omega).$$

Structural equations

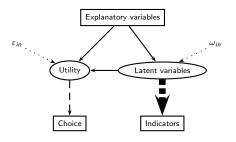
$$U_n = V(X_n, X_n^*; \beta) + \varepsilon_n, \quad \varepsilon_n \sim \mathsf{EV}(0, \mu).$$

Measurement equations

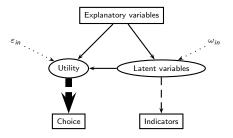


Ordinal discrete variable: ordered probit model

$$I_n^* = m(X_n^*; \alpha) + \nu_n, \quad \nu_n \sim N(0, \Sigma_{\nu})$$



Ordered probit


Measurement equations

$$P(I_n = 1) = \Pr(I_n^* \le \tau_1)$$

 $P(I_n = 2) = \Pr(I_n^* \le \tau_2) - \Pr(I_n^* \le \tau_1)$
 \vdots
 $P(I_n = 5) = 1 - \Pr(I_n^* \le \tau_4)$

Measurement equations

$$P(y_{in} = 1) = \Pr(U_{in} \ge U_{jn}, \forall j).$$

Estimation: likelihood

Assuming ω_n , ε_n and ν_n are independent, we have

$$\mathcal{L}_n(y_n, I_n|X_n; \alpha, \beta, \lambda, \Sigma_{\omega}, \Sigma_{\nu}, \mu, \tau) =$$

$$\int_{X^*} P(y_n|X_n,X^*;\beta,\mu) P(I_n|X_n,X^*;\alpha,\Sigma_{\nu},\tau) f(X^*|X_n;\lambda,\Sigma_{\omega}) dX^*.$$

Maximum likelihood estimation:

$$\max_{\alpha,\beta,\lambda,\Sigma_{\varepsilon},\Sigma_{\nu},\Sigma_{\omega}} \sum_{n} \log \left(\mathcal{L}_{n}(y_{n},I_{n}|X_{n};\alpha,\beta,\lambda,\Sigma_{\omega},\Sigma_{\nu},\mu,\tau) \right)$$

Source: Walker (2001)

Outline

- Motivation
- 2 Modeling latent concepts
- 3 Estimation
- Case studies
- Conclusion

Case studies

Walker (2001)

- Mode choice
- Latent variables:
 - Ride comfort
 - Convenience
- Indicators: (from "very poor" to "very good")
 - Relaxation during the trip
 - Reliability of the arrival time
 - Flexibility of choosing departure time
 - Ease of traveling with children
 - Safety during the trip
 - Overall rating of the mode

Case studies

Walker (2001)

- Employees' adoption of telecommuting
- Latent variables:
 - Perceived costs
 - Impact on your expenditures on home utilities
 - Impact on your expenditures on child care
 - Impact on your expenditures on elder care
 - Impact on your expenditures on overall working costs
 - Benefits
 - Impact on your schedule flexibility
 - Impact on your productivity
 - Impact on your autonomy in your job
 - Impact on the productivity of the group you work with
 - Impact on your family life
 - Impact on your social life
 - etc.

Case study: Optima

Effect of attitude on mode choice

- Switzerland, 2009–2010
- 1124 completed surveys
- 1906 trip chains from home to home

Attitudinal questions

Statements

- Envir01 Fuel price should be increased to reduce congestion and air pollution.
- Envir02 More public transportation is needed, even if taxes are set to pay the additional costs.
- Envir03 Ecology disadvantages minorities and small businesses.
- Mobil11 It is difficult to take the public transport when I carry bags or luggage.
- Mobil14 When I take the car I know I will be on time.
- Mobil16 I do not like changing the mean of transport when I am traveling.
- Mobil 17 If I use public transportation I have to cancel certain activities I would have done if I had taken the car.

Factor analysis

	Factor1	Factor2	Factor3
Envir01	-0.565		
Envir02	-0.407		
Envir03	0.414		
Mobil11	0.484		
Mobil14	0.473		
Mobil16	0.462		
Mobil17	0.434		
Mobil26			0.408
ResidCh01		0.577	
ResidCh04		0.406	
ResidCh05		0.635	
ResidCh06		0.451	
ResidCh07		-0.418	
LifSty07		0.430	

Car lovers

- Latent variable: car loving attitude
- Structural equation:

$$z = \beta_0^s + \sum_{k=1}^{K_s - 1} \beta_k^s x_k + \sigma_s \varepsilon^s$$

Explanatory variables

- age_65_more: the respondent is 65 or older;
- moreThanOneCar: the number of cars in the household is strictly greater than 1;
- moreThanOneBike: the number of bikes in the household is strictly greater than 1;
- individualHouse: the type of house is individual or terraced;
- male: the respondent is a male;

Car lovers

Explanatory variables (ctd)

- haveChildren: the family is a couple or a single with children;
- haveGA: the respondent owns a season ticket;
- highEducation: the respondent has obtained a degree strictly higher than high school.
- ScaledIncome: income, in 1000 CHF;
- ContIncome_0_4000: min(ScaledIncome,4)
- Contlncome_4000_6000: max(0,min(ScaledIncome-4,2))
- Contlncome_6000_8000: max(0,min(ScaledIncome-6,2))
- Contlncome_8000_10000: max(0,min(ScaledIncome-8,2))
- Contlncome_10000_more: max(0,ScaledIncome-10)

Measurement equations

Indicators

- Likert scale (5 levels)
- 1 strongly approve · · · 5 strongly disapprove

Thresholds

$$I_{i}^{*} = \beta_{0i}^{m} + \beta_{i}^{m}z + \sigma_{i}^{*}\varepsilon_{i}^{*}$$

$$I_{i} = \begin{cases} 1 & \text{if } I_{i}^{*} < \tau_{1} \\ 2 & \text{if } \tau_{1} \leq I_{i}^{*} < \tau_{2} \\ 3 & \text{if } \tau_{2} \leq I_{i}^{*} < \tau_{3} \\ 4 & \text{if } \tau_{3} \leq I_{i}^{*} < \tau_{4} \\ 5 & \text{if } \tau_{4} \leq I_{i}^{*} \end{cases}$$

Symmetry

$$\tau_1 = -\delta_1 - \delta_1
\tau_2 = -\delta_1
\tau_3 = \delta_1
\tau_4 = \delta_1 + \delta_2$$

Measurement equations: ordered probit

Contribution to the likelihood

$$Pr(I_{i} = j_{i}) = Pr(\tau_{i-1} \leq I_{i}^{*} \leq \tau_{i})$$

$$= Pr(\tau_{i-1} \leq \beta_{0i}^{m} + \beta_{i}^{m}z + \sigma_{i}^{*}\varepsilon_{i}^{*} \leq \tau_{i})$$

$$= Pr\left(\frac{\tau_{i-1} - \beta_{0i}^{m} - \beta_{i}^{m}z}{\sigma_{i}^{*}} < \varepsilon_{i}^{*} \leq \frac{\tau_{i} - \beta_{0i}^{m} - \beta_{i}^{m}z}{\sigma_{i}^{*}}\right)$$

$$= \Phi\left(\frac{\tau_{i} - \beta_{0i}^{m} - \beta_{i}^{m}z}{\sigma_{i}^{*}}\right) - \Phi\left(\frac{\tau_{i-1} - \beta_{0i}^{m} - \beta_{i}^{m}z}{\sigma_{i}^{*}}\right).$$

Choice model

Specification table

	Public transp.	Car	Slow modes
β_1	0	1	0
β_2	0	0	1
eta_{3}'	Travel time	0	0
β_5'		Travel time	0
β_7	Waiting time	0	0
eta_8	Cost if HWH	Cost if HWH	0
eta_{9}	Cost if not HWH	Cost if not HWH	0
$eta_{ exttt{10}}$	0	0	Distance

Travel time coefficients

$$eta_3' = eta_3 e^{eta_4 extsf{CarLovers}}$$
 $eta_5' = eta_5 e^{eta_6 extsf{CarLovers}}$ Latent variables

Value of time

Public transportation — HWH

$$\mathsf{VOT} = rac{eta_3 e^{eta_4 \mathsf{CarLovers}}}{eta_8}$$

Car — HWH

$$\mathsf{VOT} = \frac{\beta_{\mathsf{5}} e^{\beta_{\mathsf{6}} \mathsf{CarLovers}}}{\beta_{\mathsf{8}}}$$

Model estimation

- Simultaneous estimation of all parameters
- with Python Biogeme
- Important: both the choice and the indicators reveal something about the attitude.

Measurement equations

Envir01 Fuel price should be increased to reduce congestion and air pollution.

$$I_1^* = -z$$

Envir02 More public transportation is needed, even if taxes are set to pay the additional costs.

$$I_2^* = 0.460 - 0.459z + 0.918\varepsilon_2^*$$

Envir03 Ecology disadvantages minorities and small businesses.

$$I_3^* = -0.367 + 0.484z + 0.857\varepsilon_3^*$$

Measurement equations

Mobil11 It is difficult to take the public transport when I carry bags or luggage.

$$I_{11}^* = 0.418 + 0.572z + 0.895\varepsilon_{11}^*$$

Mobil14 When I take the car I know I will be on time.

$$I_{14}^* = -0.173 + 0.575z + 0.760\varepsilon_{14}^*$$

Mobil16 I do not like changing the mean of transport when I am traveling.

$$I_{16}^* = 0.147 + 0.525z + 0.873\varepsilon_{16}^*$$

Mobil 17 If I use public transportation I have to cancel certain activities I would have done if I had taken the car.

$$I_{17}^* = 0.140 + 0.514z + 0.877\varepsilon_{17}^*$$

Structural equation

age_65_more	0.0411
more Than One Car	0.710
more Than One Bike	-0.366
individualHouse	-0.116
male	0.0773
haveChildren	-0.0253
haveGA	-0.743
highEducation	-0.267
ContIncome_0_4000	0.147
ContIncome_4000_6000	-0.281
ContIncome_6000_8000	0.322
ContIncome_8000_10000	-0.666
$ContIncome_10000_more$	0.119

Choice model

Specification table

	Public transp.	Car	Slow modes	
β_1	0	1	0	0.703
β_2	0	0	1	0.261
β_3	Travel time (ref)	0	0	-3.22
$eta_{ extsf{4}}$	Travel time (att)	0	0	-0.454
β_{5}		Travel time (ref)	0	-9.50
β_{6}		Travel time (att)	0	-0.953
β_7	Waiting time	0	0	-0.0204
eta_8	Cost if HWH	Cost if HWH	0	-1.43
eta_{9}	Cost if not HWH	Cost if not HWH	0	-0.525
$eta_{ extbf{10}}$	0	0	Distance	-1.41

Outline

- Motivation
- 2 Modeling latent concepts
- Estimation
- Case studies
- Conclusion

Conclusion

- Flexible models with more structure
- Translate more assumptions into equations
- More complicated to estimate
- Currently very active field for research and applications.

