EPFL ENAC TRANSP-OR **Prof. M. Bierlaire**

Mathematical Modeling of Behavior Fall 2017

EXERCISE SESSION 4

Exercise 1 In a case study of transportation mode choice, the parameters of the utility functions have been estimated as follows:

$$U_{1n} = 1 - 0.03 \cdot tt_{1n} - 0.06 \cdot c_{1n} + 0.5 \cdot \text{income}_n + \varepsilon_{1n}$$

$$U_{2n} = -0.02 \cdot tt_{2n} - 0.0375 \cdot c_{2n} + 0.5 \cdot \text{university}_n + \varepsilon_{2n}$$
(1)

where tt_{in} is the travel time in minutes and c_{in} is the cost in CHF for respondent n, with $i \in \{\text{car}, \text{train}\}$, $income_n$ takes value 1 if the respondent's monthly income is larger than 6000CHF and 0 otherwise, and $university_n$ takes value 1 if the respondent went to the university and 0 otherwise. $\varepsilon_{1n}, \varepsilon_{2n} \stackrel{iid}{\sim} \text{EV}(0, 1)$.

1. Compute the probability to choose each mode for the following individuals:

Name	tt_1	tt_2	c_1	c_2	monthly income	university
Eva	22	18	2	2.1	7000	yes
Anna	120	100	10	15	3000	yes
Michel	10	50	3	5	10000	no
Meri	25	9	$\overline{7}$	2.1	5000	no

2. What does the alternative specific constant in alternative 1 represent? Interpret one by one all the parameters.

Exercise 2

1. Define the Box-Cox transformation. What modeling assumption are you testing when specifying a Box-Cox transformation of the travel cost in a model of transportation mode choice? Let λ be the parameter of the Box-Cox transformation. What particular cases do you obtain when $\lambda = 1$ or $\lambda = 0$?

2. In a model developed for the transportation mode choice in the Netherlands case study, the deterministic parts of the utilities for the car and rail alternatives are specified as follows:

$$V_{Car,n} = ASC_{CAR} + \beta_{COST} \cdot cost_{car,n} + \beta_{TIME_CAR} \cdot time_{car,n}$$

$$V_{Rail,n} = ASC_{RAIL} + \beta_{COST} \cdot cost_{rail,n} + \beta_{TIME_RAIL} \cdot time_{rail,n} + \beta_{FEMALE} \cdot female_n$$
(2)

where $time_{car,n}$ and $time_{rail,n}$ are the travel times for car and rail respectively for individual n, $cost_{car,n}$ and $cost_{rail,n}$ are the travel costs for car and rail for individual n, and $female_n$ takes value 1 if the individual is a female, and 0 if he is a male (note that we can use directly the variable labeled as gender from the Netherlands dataset as female is identified with 1 and male with 0). The estimation results for this model are shown in Figure 1.

Formulas

```
Car utility: ASC_CAR * one + BETA_COST * car_cost_euro + BETA_TIME_CAR * car_time
Rail utility: ASC_RAIL * one + BETA_COST * rail_cost_euro + BETA_TIME_RAIL * rail_time + BETA_FEMALE * gender
```

Estimation report

```
Number of estimated parameters: 5
                              Sample size: 228
                    Excluded observations: 1511
                      Init log likelihood: -158.038
                     Final log likelihood: -115.880
Likelihood ratio test for the init. model: 84.314
           Rho-square for the init. model: 0.267
       Rho-square-bar for the init. model: 0.235
             Akaike Information Criterion: 241.761
           Bayesian Information Criterion: 258.908
                      Final gradient norm: +1.921e-05
                               Diagnostic: CFSQP: Normal termination. Obj: 6.05545e-06 Const: 6.05545e-06
                               Iterations: 12
                     Data processing time: 00:00
                                 Run time: 00:00
                           Nbr of threads: 12
```

Estimated parameters

Click on the headers of the columns to sort the table [Credits]

Name	Value	Std err	t-test	p-value		Robust Std err	Robust t-test	p-value
ASC_CAR	2.85	1.09	2.62	0.01		1.02	2.80	0.01
BETA_COST	-0.130	0.0251	-5.17	0.00		0.0265	-4.89	0.00
BETA_FEMALE	0.675	0.330	2.05	0.04		0.329	2.05	0.04
BETA_TIME_CAR	-2.34	0.489	-4.78	0.00		0.495	-4.73	0.00
BETA_TIME_RAIL	-0.529	0.418	-1.27	0.20	*	0.414	-1.28	0.20 *

Figure 1: Estimation results of the base model

In addition to Model 1 we now estimate a model with a Box-Cox transformation of the cost variables. A snapshot of the estimation results is presented in Figure 2.

Formulas

```
Car utility: ASC_CAR * one + ( BETA_COST * ( ( car_cost_euro ^ LAMBDA ) - ( 1 ) ) ) / LAMBDA + BETA_TIME_CAR * car_time

Rail utility: ASC_RAIL * one + BETA_COST * ( ( ( rail_cost_euro ^ LAMBDA ) - ( 1 ) ) / LAMBDA ) + BETA_TIME_RAIL * rail_time + BETA_FEMALE * gender
```

Estimation report

```
Number of estimated parameters: 6
                              Sample size: 228
                    Excluded observations: 1511
                      Init log likelihood: -158.038
                     Final log likelihood: -113.265
Likelihood ratio test for the init. model: 89.546
           Rho-square for the init. model: 0.283
       Rho-square-bar for the init. model: 0.245
             Akaike Information Criterion: 238.530
           Bayesian Information Criterion: 259.106
                      Final gradient norm: +5.939e-05
                               Diagnostic: CFSQP: Normal termination. Obj: 6.05545e-06 Const: 6.05545e-06
                               Iterations: 24
                     Data processing time: 00:00
                                 Run time: 00:00
                           Nbr of threads: 12
```

Estimated parameters

Click on the headers of the columns to sort the table [Credits]

Name	Value	Std err	t-test	p-value		Robust Std err	Robust t-test	p-value	
ASC_CAR	2.64	1.09	2.41	0.02		1.03	2.56	0.01	
BETA_COST	-0.544	0.266	-2.05	0.04		0.249	-2.19	0.03	
BETA_FEMALE	0.735	0.338	2.18	0.03		0.334	2.20	0.03	
BETA_TIME_CAR	-2.42	0.500	-4.84	0.00		0.509	-4.76	0.00	
BETA_TIME_RAIL	-0.616	0.427	-1.44	0.15	*	0.423	-1.46	0.15	*
LAMBDA	0.400	0.224	1.78	0.07	*	0.211	1.90	0.06	*

Figure 2: Estimation results of model with a Box-Cox transformation

- (a) Comment and interpret the values of the estimates of both models using informal tests (i.e., analyze the signs of the coefficients).
- (b) Identify what parameters are significantly different from 0 (or 1 in the case of λ) using statistical tests.
- (c) Propose two different statistical tests to determine if model 2 provides an improvement compared to model 1.

mbi/ ek/ afa /mpp