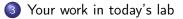
Computer Lab II Introduction to Biogeme

Meritxell Pacheco Evanthia Kazagli & Anna Fernández Antolín


Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

October 3, 2017

1 Installation of Biogeme

- Data file
- Model file

1 Installation of Biogeme

- Data file
- Model file

Biogeme

- Created by Michel Bierlaire
- State of the art software for estimating models in the field of discrete choice analysis
- Open source

MP, EK, AFA (TRANSP-OR)

- All models presented in this course can be estimated with Biogeme
- Webpage: http://biogeme.epfl.ch
- Remark: We will use the version of Biogeme called Pythonbiogeme

Lab III

< 17 ×

October 3, 2017

4 / 27

Lab computers


Programs (1)		
📴 biogeme		
Control Panel (4)		
R View devices and printers		
na Device Manager		
🍓 How to add new hardware		
🚔 Update device drivers		
See more results		
bio	×	Log off
L Brid		Log on P

- Biogeme is already installed
- Look for it and click on it

Download Biogeme on your own computer

- Download the program from the Install tab
- Follow the instructions related to the OS of your computer

(日) (同) (日) (日) (日)

How does the interface look like?

- Windows executable: GUI version
- Mac OS: terminal

(None)				۵
Data file				
(None)				۵
le viewer Activate	017			
g window Activete	Off			

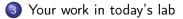

- Data file
- Model file

- Biogeme reads:
 - a file containing the model specification model_file.py
 - a file containing the data sample_file.dat
- Biogeme automatically generates:
 - A file containing the results of the maximum likelihood estimation: model_file_param.py
 - The same file in HTML format: model_file.html

How to invoke Biogeme? (Windows)

•.	
Python Biogeme	
Select the model specification file and the data file for	estimation
Model specification file	
(None)	۵
Data file	
(None)	۵
File viewer Activate OFF	
Log window Activate OFF	
Арріу В	ick Cancel

- Load the .py file in the Model file tab
- Load the .dat file in the Data file tab
- Press Apply


How to invoke Biogeme? (Mac OS)

- Use the terminal
- Access the folder where you have the model and the data files
- Type pythonbiogeme model_file data_file.dat
 - The name of the model file (without the extension)
 - The name of the data file (with the extension)

Installation of Biogeme

How does Biogeme work?
 Data file
 Model file

Biogeme: Data file

- File extension .dat
- It contains the data, what we call observations
- One observation per row
- First row contains column (variable) names
- Each row must contain a choice indicator
- Example: Netherlands transportation mode choice data
 - Choice between rail and car
 - 228 observations

Biogeme: Data file (example)

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

Biogeme: Data file (example)

netherlands.dat

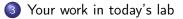
id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
	Unique ide	entifier of ob	servations		
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

臣

Biogeme: Data file (example)

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
		Choice indi	cator, 0: car	and 1: train	n
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267



Э

Installation of Biogeme

How does Biogeme work?
 Data file

Model file

Model file

Biogeme: Model file

- File extension .py
- Must be consistent with data file
- Contains deterministic utility specifications, model type etc.
- Example: Netherlands transportation mode choice data
 - Travel times and travel costs are used as explanatory variables
 - The deterministic utility specifications are

$$\begin{array}{lcl} V_{\mathsf{car}} & = & \mathsf{ASC}_{\mathsf{car}} + \beta_{\mathsf{cost}}\mathsf{cost}_{\mathsf{car}} + \beta_{\mathsf{time}}\mathsf{time}_{\mathsf{car}} \\ V_{\mathsf{rail}} & = & \beta_{\mathsf{cost}}\mathsf{cost}_{\mathsf{rail}} + \beta_{\mathsf{time}}\mathsf{time}_{\mathsf{rail}} \end{array}$$

Biogeme: Model file (parameters' section - example)

```
#Parameters to be estimated
#Arguments:
#
    1
       Name for report. Typically, the same as the variable
#
   2 Starting value
#
   3 Lower bound
#
   4 Upper bound
#
    5
      0: estimate the parameter, 1: keep it fixed
ASC_CAR = Beta('ASC_CAR', 0, -100, 100, 0)
ASC_RAIL = Beta('ASC_RAIL', 0, -100, 100, 1)
BETA_COST = Beta('BETA_COST', 0, -100, 100, 0)
BETA_TIME = Beta('BETA_TIME',0,-100,100,0)
```


Biogeme: Model file (expressions' section - example)

```
#Define here arithm. expressions that are not
#directly available from data
one = DefineVariable('one',1)
rail_time = DefineVariable('rail_time', ( rail_ivtt + rail_acc_time )
+ rail_egr_time )
car_time = DefineVariable('car_time', car_ivtt + car_walk_time )
rate_G2E = DefineVariable('rate_G2E', 0.44378022)
```

car_cost_euro = DefineVariable('car_cost_euro', car_cost * rate_G2E) rail_cost_euro = DefineVariable('rail_cost_euro', rail_cost * rate_G2E)

Biogeme: Model file (utilities' section - example)

```
#Utility functions
Car = ASC_CAR * one + BETA_COST * car_cost + BETA_TIME * car_time
Rail = ASC_RAIL * one + BETA_COST * rail_cost + BETA_TIME * rail_time
#Which utility functions corresponds to each value of choice
#in the data file
V = \{0: Car, 1: Rail\}
#Availability conditions for each alternative
av = \{0: one, 1: one\}
#Excluded observations
BIOGEME_OBJECT.EXCLUDE = sp != 0
                                                 ◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ
 MP, EK, AFA (TRANSP-OR)
                                   Lab III
                                                         October 3, 2017
                                                                       22 / 27
```

Biogeme: Model file (estimation and output - example)

```
#Loglikelihood:
loglik = bioLogLogit(V,av,choice)
#Defines an iterator on the data
rowIterator('obsIter')
#Defines the likelihood function for the estimation
BIOGEME_OBJECT.ESTIMATE = Sum(loglik,'obsIter')
#This is the optimization algorithm used (to compute maximum likelihood)
BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm'] = "CFSQP"
```

```
#Print some statistics:
nullLoglikelihood(av,'obsIter')
choiceSet = [0,1]
cteLoglikelihood(choiceSet,choice,'obsIter')
availabilityStatistics(av,'obsIter')
BIOGEME_OBJECT.FORMULAS['Car utility'] = Car
BIOGEME_OBJECT.FORMULAS['Rail utility'] = Rail
```

|▲@▶ ▲ 国▶ ▲ 国▶ - 国 - の Q @

23 / 27

October 3, 2017

Biogeme: Output (Netherlands dataset)

Estimation report

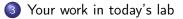
Estimated parameters

Click on the headers of the columns to sort the table [Credits]

Name	Value	Std err	t-test	p-value	Robust Std err	Robust t-test	p-value
ASC_CAR	-0.798	0.270	-2.95	0.00	0.275	-2.90	0.00
BETA_COST	-0.0499	0.0103	-4.85	0.00	0.0107	-4.67	0.00
BETA_TIME	-1.33	0.344	-3.86	0.00	0.354	-3.75	0.00

Correlation of coefficients

Click on the headers of the columns to sort the table [Credits]


Coefficient1	Coefficient2	Covariance	Correlation	t-test	p-value		Rob. cov.	Rob. corr.	Rob. t-test	p-value
ASC_CAR	BETA_TIME	0.0455	0.491	1.67	0.09	*	0.0464	0.476	1.60	0.11
ASC_CAR	BETA_COST	0.00192	0.693	-2.84	0.00		0.00210	0.713	-2.79	0.01
BETA_COST	BETA_TIME	0.000295	0.0833	3.72	0.00		0.000311	0.0822	3.61	0.00

Smallest singular value: 6.79119

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Installation of Biogeme

- Data file
- Model file

Binary Logit Case Study

- Mode choice in Netherlands (description available on the Laboratories tab)
- Download the files for this case study and copy them in a directory of your choice (e.g. Desktop)
- Go through the .py file with the help of the description
- Run the .py files with Biogeme
- Open the generated .html file and interpret the results
- Develop other model specifications following the instructions of today's laboratory session

To read and modify files

- GNU Emacs, TextEdit (Mac), Xcode (Mac), Wordpad (Windows), Notepad++ (Windows)
- Notepad (Windows) should not be used!

