EPFL ENAC TRANSP-OR **Prof. M. Bierlaire**

Mathematical Modeling of Behavior Fall 2017

HOMEWORK WEEK 2

Consider a simple example of a transportation mode choice. We assume here that four alternatives are considered by a traveler for a commuter trip: car, bus, metro, and bike. Each alternative is characterized by two attributes: the travel time (t) and the travel cost (c), as reported in Table 1.

	Attributes	
Alternatives	Travel time (in minutes)	Travel cost (in CHF)
Car	10	18
Bus	16	16
Metro	14	12
Bike	30	2

Table 1: Attributes of the alternatives

The utility function associated by the traveler with each alternative i is written as

$$U_i = -\beta_t t_i - \beta_c c_i.$$

Answer the following questions:

- 1. Is there any dominating or dominated alternative?
- 2. What alternative has the highest utility if $\beta_t = \beta_c = 0.5$?
- 3. What alternative has the highest utility if $\beta_t = 1.0$ and $\beta_c = 0.5$?
- 4. What alternative has the highest utility if $\beta_t=0.5$ and $\beta_c=1?$
- 5. Are the answers to the above questions the same or different for an individual without a driving license? Why?

mbi/ ek/ afa / mp