EPFL ENAC TRANSP-OR **Prof. M. Bierlaire**

Mathematical Modeling of Behavior Fall 2017

HOMEWORK WEEK 1

A municipality is interested in analyzing the use of public transportation by its inhabitants for their work trips. For this purpose, the following questions were asked to a sample of 3000 workers within the area of study:

- Do you use public transportation to go to work?
- What is your level of income?

The responses are included in the following contingency table:

	Level of income			
	Low	Medium	High	Total
Public transportation	630	990	45	1665
Other modes	270	660	405	1335
	900	1650	450	3000

Identify the model that makes sense from a behavioral point of view, and perform the following tasks.

- 1. Calculate the estimates $\hat{\pi}_1$, $\hat{\pi}_2$ and $\hat{\pi}_3$ of the parameters π_1 , π_2 and π_3 using the contingency table $(\pi_j = P(i|k = j))$, where *i* is the dependent variable, *k* the independent variable and *j* represents the levels that the variable *k* can take).
- 2. Calculate the standard errors of the estimates $\hat{\pi}_1$, $\hat{\pi}_2$ and $\hat{\pi}_3$.
- 3. In order to test the behavioral assumption against the data, answer the following questions:
 - (a) What is the log likelihood of the developed model (unrestricted model)?
 - (b) What is the estimate of the parameter specifying the restricted model (defined by the null hypothesis)?
 - (c) What is the log likelihood of the restricted model?
 - (d) Using a level of significance of 5%, can we reject the null hypothesis?

mbi/ ek/ afa / mp