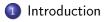

Computer Lab V Validation and forecasting with Biogeme

Meritxell Pacheco Paneque Anna Fernandez Antolin & Evanthia Kazagli

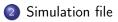
Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

November 8, 2016



2 Simulation file

Validation and forecasting



Simulation features of Biogeme

- Individual probabilities and market shares
- Outlier analysis (choice probabilities vs. actual choices)
- Forecast the market shares for different scenarios
- Compute elasticies to evaluate the changes in the market shares
- Case study: residential telephone services

Validation and forecasting

Generate the simulation file

- MNL_Base.py contains the multinomial logit
- 2 Estimate the parameters
- MNL_Base_param.py is generated
- O a copy of MNL_Base.py file and rename it (MNL_Base_simul.py)
- Replace the parameters part by the estimates obtained in MNL_Base_param.py
- O Add the simulation instructions
- Run MNL_Base_simul.py using the usual command line (pythonbiogeme MNL_Base_simul telSimple.dat)

Simulation file: Parameters

MNL Base.py

```
#Parameters to be estimated
# Arguments:
   1
      Name for report. Typically, the same as the variable
   2
      Starting value
   з
      Lower bound
#
  4
      Upper bound
#
      0: estimate the parameter. 1: keep it fixed
   5
ASC 1
         = Beta('ASC_1',0,-10,10,0)
ASC 3
      = Beta('ASC_3',0,-10,10,0)
ASC_4 = Beta('ASC_4',0,-10,10,0)
ASC_5 = Beta('ASC_5',0,-10,10,0)
B1 COST = Beta('B1 COST'.0.-10.10.0)
```

MNL_Base_simul.py

Simulation file: Probabilities

```
MNL_Base.py
```

MNL (Multinomial Logit model), with availability conditions prob = bioLogit(__V,__av,choice) __l = log(prob)

Defines an itertor on the data
rowIterator('obsIter')

Define the likelihood function for the estimation BIOGEME_OBJECT.ESTIMATE = Sum(__l,'obsIter')

The following parameters are imported from bison biogeme. You may want to remove them and prefer the default value provided by pythonbiogeme. BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm'] = "BIO" BIOGEME 0BJECT.PARAMETERS['stopFileName'] = "STOP"

MNL_Base_simul.py

```
'02 Prob. SM': __probSM,
'03 Prob. LF': __probLF,
'04 Prob. EF': __probEF,
'05 Prob. MF': __probMF}
```

BIOGEME_OBJECT.SIMULATE = Enumerate(simulate, 'obsIter')

Outcome from the simulation (I)

MNL_Base_simul.py

Simulation report

Number of draws for Monte-Carlo: 1000

Type of draws: MLHS

Row	01 Prob. BM	02 Prob. SM	03 Prob. LF	04 Prob. EF	05 Prob. MF	choice
1	0.192845	0.402253	0.269179	0	0.135724	2
2	0.392018	0.295208	0.213167	0	0.0996059	3
3	0.234204	0.372352	0.308738	0	0.084705	1
4	0.245236	0.33893	0.338732	0	0.0771019	3
5	0.133751	0.406689	0.321206	0	0.138355	3
6	0.0568031	0.142446	0.588926	0	0.211824	3
7	0.239757	0.38118	0.29235	0	0.0867131	3
8	0.391628	0.268387	0.27893	0	0.0610543	1
9	0.0373003	0.0838693	0.21226	0	0.66657	5
10	0.0608246	0.143583	0.335328	0	0.460265	3
	0.101.5CF	0.00000	0.000000	.	0.0505000	-

MP, AFA, EK (TRANSP-OR)

Outcome from the simulation (II)

MNL_Base_simul.py

Aggregate values

	01 Prob. BM	02 Prob. SM	03 Prob. LF	04 Prob. EF	05 Prob. MF	choice
Total:	73.0008	123	177.999	3	57.0001	1150
Average:	0.168205	0.28341	0.410136	0.00691245	0.131337	2.64977
Average (non zeros):	0.168205	0.28341	0.410136	0.230769	0.203572	2.64977
Non zeros:	434/434	434/434	434/434	13/434	280/434	434/434
Minimum:	0.000620764	0.00128106	0.0042052	0	0	1
Maximum:	0.426596	0.471973	0.976308	0.532859	0.990417	5

Outcome from the simulation (III)

MNL_Base_simul.py

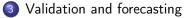
 This expression (from the parameters) was commented: #vc = bioMatrix(5, names, values) #BIOGEME_OBJECT.VARCOVAR = vc

• It generates the 5 and 95 percentiles of the probabilities

• When uncommented: **Simulation report**

Number of draws for Monte-Carlo: 1000

Type of draws: MLHS


Number of draws for sensitivity analysis: 100

Row	01 Prob. BM	01 Prob. BM_5		01 Prob. BM_median		02 Prob. SM_5		02 Prob. SM_median
1	0.192845	0.169289	0.235618	0.19305	0.402253	0.349612	0.450666	0.400703
2	0.392018	0.331631	0.47538	0.399494	0.295208	0.255755	0.33376	0.290062
3	0.234204	0.204809	0.281324	0.235363	0.372352	0.326261	0.415973	0.368713
4	0 245236	0.213808	0 293436	0 245801	0 33893	0 298055	0 377929	0 335872

11 / 16

Outlier analysis

- Predicted choice vs. actual choice
- Analyze individuals with low probabilities for the actual choice

Example

Individual 11 chooses alternative 5 (MF) but the model associates a low probability with this alternative (0.0596)

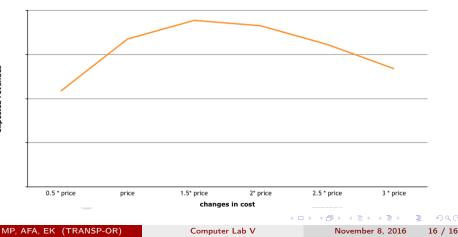
Row	01 Prob. BM	02 Prob. SM	03 Prob. LF	04 Prob. EF	05 Prob. MF	choice
1	0.192845	0.402253	0.269179	0	0.135724	2
2	0.392018	0.295208	0.213167	0	0.0996059	3
3	0.234204	0.372352	0.308738	0	0.084705	1
4	0.245236	0.33893	0.338732	0	0.0771019	3
5	0.133751	0.406689	0.321206	0	0.138355	3
6	0.0568031	0.142446	0.588926	0	0.211824	3
7	0.239757	0.38118	0.29235	0	0.0867131	3
8	0.391628	0.268387	0.27893	0	0.0610543	1
9	0.0373003	0.0838693	0.21226	0	0.66657	5
10	0.0608246	0.143583	0.335328	0	0.460265	3
11	0.401565	0.262083	0.276733	0	0.0596202	5

MP, AFA, EK (TRANSP-OR)

Expected revenues and elasticities

- Expected revenues from individuals' choices
- Cost elasticities (sensitivity towards price)
- Columns can be added to the simulation output

MNL_Base_simul.py


Forecasting (I)

- Change the value of one (or several) variables
- Analyze how the market shares will change
- Evaluate the changes in terms of the elasticities
- Example in *MNL_Base_simul_forecast.py*: cost of alternative 3 (LF) increased by 10 units
- When running this file, the probabilities for the new situation are obtained
- The impact per market segment (e.g. income group) can be analyzed:
 - Define income groups (low, medium, high)
 - Calculate the mean probabilities for each group in the base case and in the new situation

Forecasting (II)

- Evaluate different scenarios to determine the most convenient
- **Example:** test different prices to obtain the one reporting higher revenues

