EPFL ENAC TRANSP-OR **Prof. M. Bierlaire**

Mathematical Modeling of Behavior Fall 2016

EXERCISE SESSION 11

Exercise 1 The data about internal trips for a city of 300'000 individuals is described in Table 1. Three different transportation modes are considered to travel inside the city: car, bus and slow modes (walk and bike). The population is segmented in three different groups, according to their age: young (age ≤ 21), adult ($21 < age \leq 65$) and retired (age > 65).

Mode	Young	Adult	Retired	
$\overline{\operatorname{Car}}$	10'000	120'000	15'000	145'000
Bus	15'000	30'000	25'000	70'000
Slow mode	25'000	50'000	10'000	85'000
	50'000	200'000	50'000	300'000

Table 1: Description of the population of the city

Table 2 contains the data for a sample of 350 individuals from the full population.

Mode	Young	Adult	Retired	
Car	20	120	15	155
Bus	30	30	25	85
Slow mode	50	50	10	110
	100	200	50	350

- 1. Calculate the sampling probabilities. Which sampling strategy has been used to collect the data?
- 2. Which estimation procedure can be used with this sampling strategy?

3. Express (mathematically) how to estimate the market shares in the population for each alternative using the sample (Table 2) and the choice probabilities $P(i|x_n)$. Hint: Consider the weight of each segment W_s ($W_s = \frac{\# \text{ persons in segment s in the population}}{\# \text{ persons in segment s in the sample}}$) and the indicator I_{ns} (1 if individual n belongs to segment s and 0 otherwise).

Exercise 2

- 1. How are the strata defined in pure choice-based sampling?
- 2. Consider the population described in Table 1. Characterize a sample with the following sampling probabilities:
 - $R(Car) = \frac{1}{1000}$
 - $R(Bus) = \frac{1}{500}$
 - $R(\text{Slow Modes}) = \frac{1}{1000}$
- 3. Which estimation procedures are used for the following models with this sampling strategy?
 - Logit model
 - MEV model

mbi/ ek/ afa /mpp