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12 Bayesian Procedures

12.1 Introduction

A powerful set of procedures for estimating discrete choice models
has been developed within the Bayesian tradition. The breakthough
concepts were introduced by Albert and Chib (1993) and McCulloch
and Rossi (1994) in the context of probit, and by Allenby and Lenk
(1994) and Allenby (1997) for mixed logits with normally distributed
coefficients. These authors showed how the parameters of the model can
be estimated without needing to calculate the choice probabilities. Their
procedures provide an alternative to the classical estimation methods
described in Chapter 10. Rossi et al. (1996), Allenby (1997), and
Allenby and Rossi (1999) showed how the procedures can also be used to
obtain information on individual-level parameters within a model with
random taste variation. By this means, they provide a Bayesian analog
to the classical procedures that we describe in Chapter 11. Variations of
these procedures to accommodate other aspects of behavior have been
numerous. For example, Arora et al. (1998) generalized the mixed logit
procedure to take account of the quantity of purchases as well as brand
choice in each purchase occasion. Bradlow and Fader (2001) showed
how similar methods can be used to examine rankings data at an ag-
gregate level rather than choice data at the individual level. Chib and
Greenberg (1998) and Wang et al. (2002) developed methods for in-
terrelated discrete responses. Chiang et al. (1999) examined situations
where the choice set that the decision maker considers is unknown to
the researcher. Train (2001) extended the Bayesian procedure for mixed
logit to nonnormal distributions of coefficients, including lognormal,
uniform, and triangular distributions.

The Bayesian procedures avoid two of the most prominent difficulties
associated with classical procedures. First, the Bayesian procedures do
not require maximization of any function. With probit and some mixed
logit models (especially those with lognormal distributions), maximiza-
tion of the simulated likelihood function can be difficult numerically.
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Often the algorithm fails to converge for various reasons. The choice
of starting values is often critical, with the algorithm converging from
starting values that are close to the maximum but not from other start-
ing values. The issue of local versus global maxima complicates the
maximization further, since convergence does not guarantee that the
global maximum has been attained. Second, desirable estimation prop-
erties, such as consistency and efficiency, can be attained under more
relaxed conditions with Bayesian procedures than classical ones. As
shown in Chapter 10, maximum simulated likelihood is consistent only
if the number of draws used in simulation is considered to rise with
sample size; and efficiency is attained only if the number of draws rises
faster than the square root of sample size. In contrast, the Bayesian esti-
mators that we describe are consistent for a fixed number of draws used
in simulation and are efficient if the number of draws rises at any rate
with sample size.

These advantages come at a price, of course. For researchers who are
trained in a classical perspective, the learning curve can be steep. Numer-
ous interrelated techniques and concepts must be assimilated before the
power of them becomes clear. I can assure the reader, however, that the
effort is worthwhile. Another cost of the Bayesian procedures is more
fundamental. To simulate relevant statistics that are defined over a distri-
bution, the Bayesian procedures use an iterative process that converges,
with a sufficient number of iterations, to draws from that distribution.
This convergence is different from the convergence to a maximum that
is needed for classical procedures and involves its own set of difficulties.
The researcher cannot easily determine whether convergence has actu-
ally been achieved. Thus, the Bayesian procedures trade the difficulties
of convergence to a maximum for the difficulties associated with this
different kind of convergence. The researcher will need to decide, in a
particular setting, which type of convergence is less burdensome.

For some behavioral models and distributional specifications,
Bayesian procedures are far faster and, after the initial learning that a
classicist needs, are more straightforward from a programming perspec-
tive than classical procedures. For other models, the classical procedures
are easier. We will explore the relative speed of Bayesian and classical
procedures in the sections to follow. The differences can be readily cat-
egorized, through an understanding of how the two sets of procedures
operate. The researcher can use this understanding in deciding which
procedure to use in a particular setting.

Two important notes are required before proceeding. First, the
Bayesian procedures, and the term “hierarchical Bayes” that is often
used in the context of discrete choice models, refer to an estimation
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method, not a behavioral model. Probit, mixed logit, or any other model
that the researcher specifies can, in principle, be estimated by either
classical or Bayesian procedures. Second, the Bayesian perspective from
which these procedures arise provides a rich and intellectually satisfying
paradigm for inference and decision making. Nevertheless, a researcher
who is uninterested in the Bayesian perspective can still benefit from
Bayesian procedures: the use of Bayesian procedures does not necessi-
tate that the researcher adopt a Bayesian perspective on statistics. As we
will show, the Bayesian procedures provide an estimator whose proper-
ties can be examined and interpreted in purely classical ways. Under cer-
tain conditions, the estimator that results from the Bayesian procedures
is asymptotically equivalent to the maximum likelihood estimator. The
researcher can therefore use Bayesian procedures to obtain parameter es-
timates and then interpret them the same as if they were maximum likeli-
hood estimates. A highlight of the Bayesian procedures is that the results
can be interpreted from both perspectives simultaneously, drawing on
the insights afforded by each tradition. This dual interpretation parallels
that of the classical procedures, whose results can be transformed for
Bayesian interpretation as described by Geweke (1989). In short, the re-
searcher’s statistical perspective need not dictate her choice of procedure.

In the sections that follow, we provide an overview of Bayesian con-
cepts in general, introducing the prior and posterior distributions. We
then show how the mean of the posterior distribution can be interpreted
from a classical perspective as being asymptotically equivalent to the
maximum of the likelihood function. Next we address the numerical
issue of how to calculate the mean of the posterior distribution. Gibbs
sampling and, more generally, the Metropolis–Hastings algorithm can
be used to obtain draws from practically any posterior distribution, no
matter how complex. The mean of these draws simulates the mean of
the posterior and thereby constitutes the parameter estimates. The stan-
dard deviation of the draws provides the classical standard errors of the
estimates. We apply the method to a mixed logit model and compare the
numerical difficulty and speed of the Bayesian and classical procedures
under various specifications.

12.2 Overview of Bayesian Concepts

Consider a model with parameters θ . The researcher has some initial
ideas about the value of these parameters and collects data to improve this
understanding. Under Bayesian analysis, the researcher’s ideas about the
parameters are represented by a probability distribution over all possible
values that the parameters can take, where the probability represents how
likely the researcher thinks it is for the parameters to take a particular
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value. Prior to collecting data, the researcher’s ideas are based on logic,
intuition, or past analyses. These ideas are represented by a density on θ ,
called the prior distribution and denoted k(θ ). The researcher collects
data in order to improve her ideas about the value of θ . Suppose the
researcher observes a sample of N independent decision makers. Let
yn denote the observed choice (or choices) of decision maker n, and let
the set of observed choices for the entire sample be labeled collectively
as Y = {y1, . . . , yN }. Based on this sample information, the researcher
changes, or updates, her ideas about θ . The updated ideas are represented
by a new density on θ , labeled K (θ | Y ) and called the posterior distri-
bution. This posterior distribution depends on Y , since it incorporates
the information that is contained in the observed sample.

The question arises: how exactly do the researcher’s ideas about θ

change from observing Y ? That is, how does the posterior distribution
K (θ | Y ) differ from the prior distribution k(θ )? There is a precise re-
lationship between the prior and posterior distribution, established by
Bayes’ rule. Let P(yn | θ ) be the probability of outcome yn for decision
maker n. This probability is the behavioral model that relates the ex-
planatory variables and parameters to the outcome, though the notation
for the explanatory variables is omitted for simplicity. The probability
of observing the sample outcomes Y is

L(Y | θ ) =
N∏

n=1

P(yn | θ ).

This is the likelihood function (not logged) of the observed choices.
Note that it is a function of the parameters θ .

Bayes’ rule provides the mechanism by which the researcher improves
her ideas about θ . By the rules of conditioning,

(12.1) K (θ | Y )L(Y ) = L(Y | θ ) k(θ ),

where L(Y ) is the marginal probability of Y , marginal over θ :

L(Y ) =
∫

L(Y | θ )k(θ ) dθ.

Both sides of equation (12.1) represent the joint probability of Y and θ ,
with the conditioning in opposite directions. The left-hand side is the
probability of Y times the probability of θ given Y , while the right-hand
side is the probability of θ times the probability of Y given θ . Rearrang-
ing, we have

(12.2) K (θ | Y ) = L(Y | θ )k(θ )

L(Y )
.
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This equation is Bayes’ rule applied to prior and posterior distributions.
In general, Bayes rule links conditional and unconditional probabilities
in any setting and does not imply a Bayesian perspective on statistics.
Bayesian statistics arises when the unconditional probability is the prior
distribution (which reflects the researcher’s ideas about θ not conditioned
on the sample information) and the conditional probability is the poste-
rior distribution (which gives the researcher’s ideas about θ conditioned
on the sample information).

We can express equation (12.2) in a more compact and convenient
form. The marginal probability of Y , L(Y ), is constant with respect to θ

and, more specifically, is the integral of the numerator of (12.2). As such,
L(Y ) is simply the normalizing constant that assures that the posterior
distribution integrates to 1, as required for any proper density. Using this
fact, equation (12.2) can be stated more succinctly by saying simply that
the posterior distribution is proportional to the prior distribution times
the likelihood function:

K (θ | Y ) ∝ L(Y | θ )k(θ ).

Intuitively, the probability that the researcher ascribes to a given value
for the parameters after seeing the sample is the probability that she
ascribes before seeing the sample times the probability (i.e., likelihood)
that those parameter values would result in the observed choices.

The mean of the posterior distribution is

(12.3) θ̄ =
∫

θ K (θ | Y ) dθ.

This mean has importance from both a Bayesian and a classical perspec-
tive. From a Bayesian perspective, θ̄ is the value of θ that minimizes
the expected cost of the researcher being wrong about θ , if the cost of
error is quadratic in the size of the error. From a classical perspective,
θ̄ is an estimator that has the same asymptotic sampling distribution as
the maximum likelihood estimator. We explain both of these concepts
in the following sections.

12.2.1. Bayesian Properties of θ̄

The researcher’s views about θ are represented by the posterior
K (θ | Y ) after observing the sample. Suppose that the researcher were
required to guess the true value of θ and would be levied a penalty for the
extent to which her guess differed from the true value. More realistically,
suppose that some action must be taken that depends on the value of θ ,
such as a manufacturer setting the price of a good when the revenues at
any price depend on the price elasticity of demand. There is a cost to
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taking the wrong action, such as setting price based on the belief that
the price elasticity is −0.2 when the true elasticity is actually −0.3. The
question becomes: what value of θ should the researcher use in these
decisions in order to minimize her expected cost of being wrong, given
her beliefs about θ as represented in the posterior distribution?

If the cost of being wrong is quadratic in the distance between the θ

that is used in the decision and the true θ , then the optimal value of θ to
use in the decision is θ̄ . This fact can be demonstrated as follows. If the
researcher uses θ0 in her decisions when the true value is θ∗, the cost of
being wrong is

C(θ0, θ
∗) = (θ0 − θ∗)′ B(θ0 − θ∗),

where B is a matrix of constants. The researcher doesn’t know the true
value of θ , but has beliefs about its value as represented in K (θ | Y ).
The researcher can therefore calculate the expected cost of being wrong
when using the value θ0. This expected cost is

EC(θ0) =
∫

C(θ0, θ )K (θ | Y ) dθ

=
∫

(θ0 − θ )′ B(θ0 − θ )K (θ | Y ) dθ.

The value of θ0 that minimizes this expected cost is determined by
differentiating EC(θ0), setting the derivative equal to zero, and solving
for θ0. The derivative is

∂EC(θ0)

∂θ0

=
∫

∂[(θ0 − θ )′ B(θ0 − θ )]

∂θ0

K (θ | Y ) dθ

=
∫

2(θ0 − θ )′ BK (θ | Y ) dθ

= 2θ ′
0 B

∫
K (θ | Y ) dθ − 2

(∫
θ K (θ | Y ) dθ

)′
B

= 2θ ′
0 B − 2θ̄

′ B.

Setting this expression to equal zero and solving for θ0, we have

2θ ′
0 B − 2θ̄

′ B = 0,

θ ′
0 B = θ̄

′ B,

θ0 = θ̄ .

The mean of the posterior, θ̄ , is the value of θ that a Bayesian researcher
would optimally act upon if the cost of being wrong about θ rises quadrat-
ically with the distance to the true θ .
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Zellner (1971) describes the optimal Bayesian estimator under other
loss functions. While the loss function is usually assumed to be sym-
metric and unbounded like the quadratic, it need not be either; see, for
example, Wen and Levy (2001). Importantly, Bickel and Doksum (2000)
show that the correspondence that we describe in the next section be-
tween the mean of the posterior and the maximum likelihood estimator
also applies to Bayesian estimators that are optimal under many other
loss functions.

12.2.2. Classical Properties of θ̄ :
The Bernstein–von Mises Theorem

Classical statistics is not concerned with the researcher’s be-
liefs and contains no notion of prior and posterior distributions. The
concern of classical statistics is to determine the sampling distribution
of an estimator. This distribution reflects the fact that a different sam-
ple would produce a different point estimate. The sampling distribution
is the distribution of point estimates that would be obtained if many
different samples were taken. Usually, the sampling distribution for an
estimator cannot be derived for small samples. However, the asymptotic
sampling distribution can usually be derived, which approximates the
actual sampling distribution when the sample size is large enough. In
classical statistics, the asymptotic sampling distribution determines the
properties of the estimator, such as whether the estimator is consistent,
asymptotically normal, and efficient. The variance of the asymptotic
distribution provides the standard errors of the estimates and allows for
hypothesis testing, the accuracy of which rises with sample size.

From a classical perspective, θ̄ is simply a statistic like any other
statistic. Its formula, given in (12.3), exists and can be applied even if
the researcher does not interpret the formula as representing the mean
of a posterior distribution. The researcher can consider K (θ | Y ) to be
a function defined by equation (12.2) for any arbitrarily defined k(θ)
that meets the requirements of a density. The relevant question for the
classical researcher is the same as with any statistic: what is the sampling
distribution of θ̄?

The answer to this question is given by the Bernstein–von Mises the-
orem. This theorem has a long provenance and takes many forms. In the
nineteenth century, Laplace (1820) observed that posterior distributions
start to look more and more like normal distributions as the sample size
increases. Over the years, numerous versions of the observation have
been demonstrated under various conditions, and its implications have
been more fully explicated. See Rao (1987), Le Cam and Yang (1990),
Lehmann and Casella (1998), and Bickel and Doksum (2000) for modern
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treatments with historical notes. The theorem is named after Bernstein
(1917) and von Mises (1931) because they seem to have been the first to
provide a formal proof of Laplace’s observation, though under restrictive
assumptions that others later relaxed.

I describe the theorem as three related statements. In these state-
ments, the information matrix, which we used extensively in Chap-
ters 8 and 10, is important. Recall that the score of an observation
is the gradient of that observation’s log likelihood with respect to the
parameters: sn = ∂ ln P(yn | θ )/∂θ , where P(yn | θ ) is the probability
of decision maker n’s observed choices. The information matrix, −H,
is the negative expected derivative of the score, evaluated at the true
parameters:

−H = −E

(
∂2 ln P(yn | θ∗)

∂θ ∂θ ′

)
,

where the expectation is over the population. (The negative is taken
so that the information matrix can be positive definite, like a covari-
ance matrix.) Recall also that the maximum likelihood estimator has
an asymptotic variance equal to (−H)−1/N . That is,

√
N (θ∗ − θ̂ )

d→
N (0, (−H)−1), so that θ̂

a∼ N (θ∗, (−H)−1/N ), where θ̂ is the maximum
likelihood estimator.

We can now give the three statements that collectively constitute the
Bernstein–von Mises theorem:

1.
√

N (θ − θ̄ )
d→ N (0, (−H)−1).

Stated intuitively, the posterior distribution of θ converges to a
normal distribution with variance (−H)−1/N as the sample size

rises. In using the expression
d→ in this context, it is important

to note that the distribution that is converging is the posterior
distribution of

√
N (θ − θ̄ ) rather than the sampling distribu-

tion. In classical analysis of estimators, as in Chapter 10, the

notation
d→ is used to indicate that the sampling distribution

is converging. Bayesian analysis examines the posterior rather
than the sampling distribution, and the notation indicates that
the posterior distribution is converging.

The important points to recognize in this first statement are
that, as sample size rises, (i) the posterior becomes normal and
(ii) the variance of the posterior becomes the same as the sam-
pling variance of the maximum likelihood estimator. These two
points are relevant for the next two statements.

2.
√

N (θ̄ − θ̂ )
p→ 0.

The mean of the posterior converges to the maximum of the
likelihood function. An even stronger statement is being made.



P1: JYD/...

CB495-12Drv CB495/Train KEY BOARDED May 25, 2009 16:38 Char Count= 0

290 Estimation

The difference between the mean of the posterior and the maxi-
mum of the likelihood function disappears asymptotically, even
when the difference is scaled up by

√
N .

This result makes intuitive sense, given the first result. Since
the posterior eventually becomes normal, and the mean and
maximum are the same for a normal distribution, the mean of
the posterior eventually becomes the same as the maximum
of the posterior. Also, the effect of the prior distribution on
the posterior disappears as the sample size rises (provided of
course that the prior is not zero in the neighborhood of the true
value). The posterior is therefore proportional to the likelihood
function for large enough sample sizes. The maximum of the
likelihood function becomes the same as the maximum of the
posterior, which, as stated, is also the mean. Stated succinctly:
since the posterior is asymptotically normal so that its mean
equals its maximum, and the posterior is proportional to the
likelihood function asymptotically, the difference between θ̄ and
θ̂ eventually disappears.

3.
√

N (θ̄ − θ∗)
d→ N (0, (−H)−1).

The mean of the posterior, considered as a classical estimator, is
asymptotically equivalent to the maximum likelihood estimator.
That is, θ̄

a∼ N (θ∗, (−H)−1/N ), just like the maximum likeli-
hood estimator. Note that since we are now talking in classical
terms, the notation refers to the sampling distribution of θ̄ , the
same as it would for any estimator.

This third statement is an implication of the first two. The
statistic

√
N (θ̄ − θ∗) can be rewritten as

√
N (θ̄ − θ∗) =

√
N (θ̂ − θ∗) +

√
N (θ̄ − θ̂ ).

From statement 2, we know that
√

N (θ̄ − θ̂ )
p→ 0, so that the

second term disappears asymptotically. Only the first term af-
fects the asymptotic distribution. This first term is the defining
statistic for the maximum likelihood estimator θ̂ . We showed

in Chapter 10 that
√

N (θ̂ − θ∗)
d→ N (0, (−H)−1). The statistic√

N (θ̄ − θ∗) therefore follows the same distribution asymptoti-
cally. Essentially, since θ̄ and θ̂ converge, their asymptotic sam-
pling distributions are the same.

The Bernstein–von Mises theorem establishes that θ̄ is on the same
footing, in classical terms, as θ̂ . Instead of maximizing the like-
lihood function, the researcher can calculate the mean of the posterior
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distribution and know that the resulting estimator is as good in classical
terms as maximum likelihood.

The theorem also provides a procedure for obtaining the standard
errors of the estimates. Statement 1 says that asymptotically the variance
of the posterior distribution is (−H)−1/N , which, by statement 3, is the
asymptotic sampling variance of the estimator θ̄ . The variance of the
posterior is the asymptotic variance of the estimates. The researcher can
perform estimation entirely by using moments of the posterior: the mean
of the posterior provides the point estimates, and the standard deviation
of the posterior provides the standard errors.

In applications, the posterior mean and the maximum of the likelihood
function can differ when sample size is insufficient for the asymptotic
convergence. Huber and Train (2001) found the two to be remarkably
similar in their application, while Ainslie et al. (2001) found them to be
sufficiently different to warrant consideration. When the two estimates
are not similar, other grounds must be used to choose between them (if
indeed a choice is necessary), since their asymptotic properties are the
same.

12.3 Simulation of the Posterior Mean

To calculate the mean of the posterior distribution, simulation procedures
are generally required. As stated previously, the mean is

θ̄ =
∫

θ K (θ | Y ) dθ.

A simulated approximation of this integral is obtained by taking draws of
θ from the posterior distribution and averaging the results. The simulated
mean is

θ̌ = 1

R

R∑
r=1

θ r ,

where θ r is the r th draw from K (θ | Y ). The standard deviation of the
posterior, which serves as the standard error of the estimates, is simulated
by taking the standard deviation of the R draws.

As stated, θ̄ has the same asymptotic properties as the maximum
likelihood estimator θ̂ . How does the use of simulation to approximate θ̄

affect its properties as an estimator? For maximum simulated likelihood
(MSL), we found that the number of draws used in simulation must rise
faster than the square root of the sample size in order for the estimator
to be asymptotically equivalent to maximum likelihood. With a fixed
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number of draws, the MSL estimator is inconsistent. If the number of
draws rises with sample size but at a slower rate than the square root of
the sample size, then MSL is consistent but not asymptotically normal
or efficient. As we will see, desirable properties of the simulated mean
of the posterior (SMP) are attained with more relaxed conditions on
the number of draws. In particular, the SMP estimator is consistent and
asymptotically normal for a fixed number of draws and becomes efficient
and equivalent to maximum likelihood if the number of draws rises at
any rate with sample size.

To demonstrate these properties, we examine the normalized statistic√
N (θ̌ − θ∗). This statistic can be rewritten as

√
N (θ̌ − θ∗) =

√
N (θ̄ − θ∗) +

√
N (θ̌ − θ̄ ).

From statement 3 of the Bernstein–von Mises theorem, we know the
limiting distribution of the first term:

√
N (θ̄ − θ∗)

d→ N (0, (−H)−1).
The central limit theorem gives us the limiting distribution of the second
term. θ̌ is the average of R draws from a distribution with mean θ̄ and
variance (−H−1)/N . Assuming the draws are independent, the central
limit theorem states that the average of these R draws is distributed with
mean θ̄ and variance (−H)−1/RN . Plugging this information into the

second term, we have
√

N (θ̌ − θ̄ )
d→ N (0, (−H)−1/R). The two terms

are independent by construction, and so

√
N (θ̌ − θ∗)

d→ N

(
0,

(
1 + 1

R

)
(−H)−1

)
.

The simulated mean of the posterior is consistent and asymptotically
normal for fixed R. The covariance is inflated by a factor of 1/R due to
the simulation; however, the covariance matrix can be calculated, and
so standard errors and hypothesis testing can be conducted that take into
account the simulation noise.

If R rises at any rate with N, then the second term disappears asymp-
totically. We have

√
N (θ̌ − θ∗)

d→ N (0, (−H)−1),

which is the same as for the actual (unsimulated) mean θ̄ and the maxi-
mum likelihood estimator θ̂ . When R rises with N, θ̌ is asymptotically
efficient and equivalent to maximum likelihood.

Two notes are required regarding this derivation. First, we have as-
sumed that the draws from the posterior distribution are independent. In
the sections to follow, we describe methods for drawing from the pos-
terior that result in draws that exhibit a type of serial correlation. When
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draws of this type are used, the variance of the simulated mean is in-
flated by more than a factor of 1/R. The estimator is still consistent and
asymptotically normal with a fixed number of nonindependent draws; its
covariance is simply greater. And, if R rises with N, the extra covariance
due to simulation disappears asymptotically even with nonindependent
draws, such that the simulated mean is asymptotically equivalent to
maximum likelihood.

Second, we have assumed that draws from the posterior distribution
can be taken without needing to simulate the choice probabilities. For
some models, taking a draw from the posterior requires simulating the
choice probabilities on which the posterior is based. In this case, the sim-
ulated mean of the posterior involves simulation within simulation, and
the formula for its asymptotic distribution is more complex. As we will
see, however, for most models, including all the models that we consider
in this book, draws from the posterior can be taken without simulating the
choice probabilities. One of the advantages of the Bayesian procedures
is that they usually avoid the need to simulate choice probabilities.

12.4 Drawing from the Posterior

Usually, the posterior distribution does not have a convenient form from
which to take draws. For example, we know how to take draws easily
from a joint untruncated normal distribution; however, it is rare that
the posterior takes this form for the entire parameter vector. Importance
sampling, which we describe in Section 9.2.7 in relation to any density,
can be useful for simulating statistics over the posterior. Geweke (1992,
1997) describes the approach with respect to posteriors and provides
practical guidance on appropriate selection of a proposal density. Two
other methods that we described in Chapter 9 are particularly useful
for taking draws from a posterior distribution: Gibbs sampling and the
Metropolis–Hasting algorithm. These methods are often called Monte
Carlo Markov chain, or MCMC, methods. Formally, Gibbs sampling is a
special type of Metropolis–Hasting algorithm (Gelman, 1992). However,
the case is so special, and so conceptually straightforward, that the term
Metropolis–Hasting (MH) is usually reserved for versions that are more
complex than Gibbs sampling. That is, when the MH algorithm is Gibbs
sampling, it is referred to as Gibbs sampling, and when it is more complex
than Gibbs sampling, it is referred to as the MH algorithm. I maintain
this convention hereafter.

It will be useful for the reader to review Sections 9.2.8 and 9.2.9,
which describe Gibbs sampling and the MH algorithm, since we will be
using these procedures extensively in the remainder of this chapter. As
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stated, the mean of the posterior is simulated by taking draws from
the posterior and averaging the draws. Instead of taking draws from the
multidimensional posterior for all the parameters, Gibbs sampling allows
the researcher to take draws of one parameter at a time (or a subset of
parameters), conditional on values of the other parameters (Casella and
George, 1992). Drawing from the posterior for one parameter conditional
on the others is usually much easier than drawing from the posterior for
all parameters simultaneously.

In some cases, the MH algorithm is needed in conjunction with Gibbs
sampling. Suppose, for example, that the posterior for one parameter
conditional on the other parameters does not take a simple form. In
this case, the MH algorithm can be utilized, since it is applicable to
(practically) any distribution (Chib and Greenberg, 1995).

The MH algorithm is particularly useful in the context of posterior
distributions because the normalizing constant for the posterior need not
be calculated. Recall that the posterior is the prior times the likelihood
function, divided by a normalizing constant that assures that the posterior
integrates to one:

K (θ | Y ) = L(Y | θ )k(θ )

L(Y )
,

where L(Y ) is the normalizing constant

L(Y ) =
∫

L(Y | θ )k(θ ) dθ.

This constant can be difficult to calculate, since it involves integration.
As described in Section 9.2.9, the MH algorithm can be applied without
knowing or calculating the normalizing constant of the posterior.

In summary, Gibbs sampling, combined if necessary with the MH
algorithm, allows draws to be taken from the posterior of a parameter
vector for essentially any model. These procedures are applied to a mixed
logit model in Section 12.6. First, however, we will derive the posterior
distribution for some very simple models. As we will see, these results
often apply in complex models for a subset of the parameters. This fact
facilitates the Gibbs sampling of these parameters.

12.5 Posteriors for the Mean and Variance
of a Normal Distribution

The posterior distribution takes a very convenient form for some simple
inference processes. We describe two of these situations, which, as we
will see, often arise within more complex models for a subset of the
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parameters. Both results relate to the normal distribution. We first con-
sider the situation where the variance of a normal distribution is known,
but the mean is not. We then turn the tables and consider the mean to
be known but not the variance. Finally, combining these two situations
with Gibbs sampling, we consider the situation where both the mean
and variance are unknown.

12.5.1. Result A: Unknown Mean, Known Variance

We discuss the one-dimensional case first, and then generalize
to multiple dimensions. Consider a random variable β that is distributed
normal with unknown mean b and known variance σ . The researcher
observes a sample of N realizations of the random variable, labeled
βn, n = 1, . . . , N . The sample mean is β̄ = (1/N )

∑
n βn . Suppose the

researcher’s prior on b is N (b0, s0); that is, the researcher’s prior beliefs
are represented by a normal distribution with mean b0 and variance s0.
Note that we now have two normal distributions: the distribution of β,
which has mean b, and the prior distribution on this unknown mean,
which has mean β0. The prior indicates that the researcher thinks it is
most likely that b = β0 and also thinks there is a 95 percent chance that
b is somewhere between β0 − 1.96

√
s0 and β0 + 1.96

√
s0. Under this

prior, the posterior on b is N (b1, s1) where

b1 =
1
s0

b0 + N
σ
β̄

1
s0

+ N
σ

and

s1 = 1
1
s0

+ N
σ

.

The posterior mean b1 is the weighted average of the sample mean and
the prior mean.

Proof: The prior is

k(b) = 1√
2πs0

e−(b−b0)2/2s0 .

The probability of drawing βn from N (b, σ ) is

1√
2πσ

e−(b−βn)2/2σ ,
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and so the likelihood of the N draws is

L(βn ∀n | b) =
∏

n

1√
2πσ

e−(b−βn)2/2σ

= 1

(2πσ )N/2
e− ∑

(b−βn)2/2σ

= 1

(2πσ )N/2
e(−Ns̄−N (b−β̄)2)/2σ

= 1

(2πσ )N/2
e−Ns̄/2σ · e−N (b−β̄)2/2σ ,

where s̄ = (1/N )
∑

(βn − β̄)2 is the sample variance of the βn’s. The
posterior is therefore

K (b | βn ∀n) ∝ L(βn ∀n | b)k(b)

= 1

(2πσ )N/2
e−Ns̄/2σ · e−N (b−β̄)2/2σ × 1√

2πs0

e−(b−b0)2/2s0

= m1e−[N (b−β̄)2/2σ ]−[(b−b0)2/2s0],

where m1 is a constant that contains all the multiplicative terms that do
not depend on b. With some algebraic manipulation, we have

K (b | βn ∀n) ∝ e−[N (b−β̄)2/2σ ]−[(b−b0)2/2s0)]

∝ e(b2−2b1b)/2s1

∝ e(b−b1)2/2s1 .

The second ∝ removes β̄
2

and b2
0 from the exponential, since they do not

depend on b and thereby only affect the normalizing constant. (Recall
that exp(a + b) = exp(a) exp(b), so that adding and removing terms
from the exponential has a multiplicative effect on K (b | βn ∀n).) The
third ∝ adds b1β̄ to the exponential, which also does not depend on b.
The posterior is therefore

K (b | βn ∀n) = me(b−b1)2/2s1,

where m is the normalizing constant. This formula is the normal density
with mean b1 and variance s1.

As stated, the mean of the posterior is a weighted average of the
sample mean and the prior mean. The weight on the sample mean rises
as sample size rises, so that for large enough N , the prior mean becomes
irrelevant.

Often a researcher will want to specify a prior that represents very lit-
tle knowledge about the parameters before taking the sample. In general,
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the researcher’s uncertainty is reflected in the variance of the prior. A
large variance means that the researcher has little idea about the value
of the parameter. Stated equivalently, a prior that is nearly flat means
that the researcher considers all possible values of the parameters to
be equally likely. A prior that represents little information is called
diffuse.

We can examine the effect of a diffuse prior on the posterior of b.
By raising the variance of the prior, s0, the normal prior becomes more
spread out and flat. As s0 → ∞, representing an increasingly diffuse
prior, the posterior approaches N (β̄, σ/N ).

The multivariate versions of this result are similar. Consider a K -
dimensional random vector β ∼ N (b, W ) with known W and unknown
b. The researcher observes a sample βn, n = 1, . . . , N , whose sample
mean is β̄. If the researcher’s prior on b is diffuse (normal with an
unboundedly large variance), then the posterior is N (β̄, W/N ).

Taking draws from this posterior is easy. Let L be the Choleski factor
of W/N . Draw K iid standard normal deviates, ηi , i = 1, . . . , K , and
stack them into a vector η = 〈η1, . . . , ηK 〉′. Calculate b̃ = β̄ + Lη. The
resulting vector b̃ is a draw from N (β̄, W/N ).

12.5.2. Result B: Unknown Variance, Known Mean

Consider a (one-dimensional) random variable that is distributed
normal with known mean b and unknown variance σ . The researcher
observes a sample of N realizations, labeled βn, n = 1, . . . , N . The
sample variance around the known mean is s̄ = (1/N )

∑
n(βn − b)2.

Suppose the researcher’s prior on σ is inverted gamma with degrees of
freedom v0 and scale s0. This prior is denoted IG(v0, s0). The density is
zero for any negative value for σ , reflecting the fact that a variance must
be positive. The mode of the inverted gamma prior is s0v0/(1 + v0).
Under the inverted gamma prior, the posterior on σ is also inverted
gamma IG(v1, s1), where

v1 = v0 + N ,

s1 = v0s0 + Ns̄

v0 + N
.

Proof: An inverted gamma with v0 degrees of freedom and scale s0

has density

k(σ ) = 1

m0σ (v0/2)+1
e−v0s0/2σ ,

where m0 is the normalizing constant. The likelihood of the sample,
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treated as a function of σ , is

L(βn ∀n | σ ) = 1

(2πσ )N/2
e− ∑

(b−βn)2/2σ = 1

(2πσ )N/2
e−Ns̄/2σ .

The posterior is then

K (σ | βn ∀n) ∝ L(βn ∀n | σ )k(σ )

∝ 1

σ N/2
e−Ns̄/2σ × 1

σ (v0/2)+1
e−v0s0/2σ

= 1

σ ((N+v0)/2)+1
e−(Ns̄+v0s0)/2σ

= 1

σ (v1/2)+1
e−v1s1/2σ ,

which is the inverted gamma density with v1 degrees of freedom and
scale s1.

The inverted gamma prior becomes more diffuse with lower v0. For
the density to integrate to one and have a mean, v0 must exceed 1. It
is customary to set s0 = 1 when specifying v0 → 1. Under this diffuse
prior, the posterior becomes IG(1 + N , (1 + Ns̄)/(1 + N )). The mode
of this posterior is (1 + Ns̄)/(2 + N ), which is approximately the sample
variance s̄ for large N .

The multivariate case is similar. The multivariate generalization of
an inverted gamma distribution is the inverted Wishart distribution.
The result in the multivariate case is the same as with one random
variable except that the inverted gamma is replaced by the inverted
Wishart.

A K -dimensional random vector β ∼ N (b, W ) has known b but un-
known W . A sample of size N from this distribution has variance around
the known mean of S̄ = (1/N )

∑
n(βn − b)(βn − b)′. If the researcher’s

prior on W is inverted Wishart with v0 degrees of freedom and scale ma-
trix S0, labeled IW(v0, S0), then the posterior on W is IW(v1, S1) where

v1 = v0 + N ,

S1 = v0S0 + N S̄

v0 + N
.

The prior becomes more diffuse with lower v0, though v0 must exceed
K in order for the prior to integrate to one and have means. With S0 = I ,
where I is the K -dimensional identity matrix, the posterior under a dif-
fuse prior becomes IW(K + N , (K I + N S̄)/(K + N )). Conceptually,
the prior is equivalent to the researcher having a previous sample of K
observations whose sample variance was I . As N rises without bound,
the influence of the prior on the posterior eventually disappears.
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It is easy to take draws from inverted gamma and inverted Wishart
distributions. Consider first an inverted gamma IG(v1, s1). Draws are
taken as follows:

1. Take v1 draws from a standard normal, and label the draws
ηi , i = 1, . . . , v1.

2. Divide each draw by
√

s1, square the result, and take the average.
That is, calculate r = (1/v1)

∑
i (
√

1/s1ηi )
2, which is the sample

variance of v1 draws from a normal distribution whose variance
is 1/s1.

3. Take the inverse of r : s̃ = 1/r is a draw from the inverted
gamma.

Draws from a K -dimensional inverted Wishart IW(v1, S1) are
obtained as follows:

1. Take v1 draws of K -dimensional vectors whose elements are
independent standard normal deviates. Label these draws ηi ,

i = 1, . . . , v1.
2. Calculate the Choleski factor of the inverse of S1, labeled L ,

where LL′ = S−1
1 .

3. Create R = (1/v1)
∑

i (Lηi )(Lηi )
′. Note that R is the variance

of draws from a distribution with variance S−1
1 .

4. Take the inverse of R. The matrix S̃ = R−1 is a draw from
IW(v1, S1).

12.5.3. Unknown Mean and Variance

Suppose that both the mean b and variance W are unknown.
For neither of these parameters does the posterior take a convenient
form. However, draws can easily be obtained using Gibbs sampling and
results A and B. A draw of b is taken conditional on W , and then a
draw of W is taken conditional on b. Result A says that the posterior
for b conditional on W is normal, which is easy to draw from. Result
B says that the posterior for W conditional on b is inverted Wishart,
which is also easy to draw from. Iterating through numerous cycles of
draws from the conditional posteriors provides, eventually, draws from
the joint posterior.

12.6 Hierarchical Bayes for Mixed Logit

In this section we show how the Bayesian procedures can be used to
estimate the parameters of a mixed logit model. We utilize the approach
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developed by Allenby (1997), implemented by SawtoothSoftware
(1999), and generalized by Train (2001). Let the utility that person n
obtains from alternative j in time period t be

Unjt = β ′
nxnjt + εnjt ,

where εnjt is iid extreme value and βn ∼ N (b, W ). Giving βn a normal
distribution allows us to use results A and B, which speeds estimation
considerably. In the following section, we discuss the use of nonnormal
distributions.

The researcher has priors on b and W . Suppose the prior on b is
normal with an unboundedly large variance. Suppose that the prior on
W is inverted Wishart with K degrees of freedom and scale matrix I ,
the K -dimensional identity matrix. Note that these are the priors used
for results A and B. More flexible priors can be specified for W , using
the procedures of, for example, McCulloch and Rossi (2000), though
doing so makes the Gibbs sampling more complex.

A sample of N people is observed. The chosen alternatives in all time
periods for person n are denoted y′

n = 〈yn1, . . . , ynT 〉, and the choices
of the entire sample are labeled Y = 〈y1, . . . , yN 〉. The probability of
person n’s observed choices, conditional on β, is

L(yn | β) =
∏

t

(
eβ ′xnynt t∑

j eβ ′xnjt

)
.

The probability not conditional on β is the integral of L(yn | β) over all
β:

L(yn | b, W ) =
∫

L(yn | β)φ(β | b, W ) dβ,

where φ(β | b, W ) is the normal density with mean b and variance W .
This L(yn | b, W ) is the mixed logit probability.

The posterior distribution of b and W is, by definition,

(12.4) K (b, W | Y ) ∝
∏

n

L(yn | b, W )k(b, W ),

where k(b, W ) is the prior on b and W described earlier (i.e., normal for
b times inverted Wishart for W ).

It would be possible to draw directly from K (b, W | Y ) with the
MH algorithm. However, doing so would be computationally very slow.
For each iteration of the MH algorithm, it would be necessary to cal-
culate the right-hand side of (12.4). However, the choice probability
L(yn | b, W ) is an integral without a closed form and must be approx-
imated through simulation. Each iteration of the MH algorithm would
therefore require simulation of L(yn | b, W ) for each n. That would be
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very time-consuming, and the properties of the resulting estimator would
be affected by it. Recall that the properties of the simulated mean of the
posterior were derived under the assumption that draws can be taken
from the posterior without needing to simulate the choice probabilities.
MH applied to (12.3) violates this assumption.

Drawing from K (b, W | Y ) becomes fast and simple if each βn is
considered to be a parameter along with b and W , and Gibbs sampling
is used for the three sets of parameters b, W , and βn ∀n. The posterior
for b, W, and βn ∀n is

K (b, W, βn ∀n | Y ) ∝
∏

n

L(yn | βn)φ(βn | b, W )k(b, W ).

Draws from this posterior are obtained through Gibbs sampling. A draw
of each parameter is taken, conditional on the other parameters: (1)
Take a draw of b conditional on values of W and βn ∀n. (2) Take a draw
of W conditional on values of b and βn ∀n. (3) Take a draw of βn∀n
conditional on values of b and W . Each of these steps is easy, as we will
see. Step 1 uses result A, which gives the posterior of the mean given the
variance. Step 2 uses result B, which gives the posterior of the variance
given the mean. Step 3 uses an MH algorithm, but in a way that does not
involve simulation within the algorithm. Each step is described in the
following:

1. b | W, βn ∀n. We condition on W and each person’s βn in this
step, which means that we treat these parameters as if they were
known. Result A gives us the posterior distribution of b under
these conditions. The βn’s constitute a sample of N realizations
from a normal distribution with unknown mean b and known
variance W . Given our diffuse prior on b, the posterior on b is
N (β̄, W/N ), where β̄ is the sample mean of the βn’s. A draw
from this posterior is obtained as described in Section 12.5.1.

2. W | b, βn ∀n. Result B gives us the posterior for W conditional
on b and the βn’s. The βn’s constitute a sample from a nor-
mal distribution with known mean b and unknown variance W .
Under our prior on W , the posterior on W is inverted Wishart
with K + N degrees of freedom and scale matrix (K I + N S1)/
(K + N ), where S1 = (1/N )

∑
n(βn − b)(βn − b)′ is the sam-

ple variance of the βn’s around the known mean b. A draw from
the inverted Wishart is obtained as described in Section 12.5.2.

3. βn | b, W. The posterior for each person’s βn , conditional on
their choices and the population mean and variance of βn , is

(12.5) K (βn | b, W, yn) ∝ L(yn | βn)φ(βn | b, W ).
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There is no simple way to draw from this posterior, and so
the MH algorithm is used. Note that the right-hand side of
(12.5) is easy to calculate: L(yn | βn) is a product of logits, and
φ(βn | b, W ) is the normal density. The MH algorithm operates
as follows:
(a) Start with a value β0

n .
(b) Draw K independent values from a standard normal density,

and stack the draws into a vector labeled η1.

(c) Create a trial value of β1
n as β̃

1
n = β0

n + ρLη1, where ρ is
a scalar specified by the researcher and L is the Choleski
factor of W . Note that the proposal distribution (which is
labeled g(·) in Section 9.2.9) is specified to be normal with
zero mean and variance ρ2W .

(d) Draw a standard uniform variable μ1.
(e) Calculate the ratio

F = L(yn | β̃
1
n)φ(β̃

1
n | b, W )

L(yn | β0
n )φ(β0

n | b, W )
.

(f) If μ1 ≤ F , accept β̃
1
n and let β1

n = β̃
1
n . If μ1 > F , reject β̃

1
n

and let β1
n = β0

n .
(g) Repeat the process many times. For high enough t , β t

n is a
draw from the posterior.

We now know how to draw from the posterior for each parameter
conditional on the other parameters. We combine the procedures into
a Gibbs sampler for the three sets of parameters. Start with any initial
values b0, W 0, and β0

n ∀n. The t th iteration of the Gibbs sampler consists
of these steps:

1. Draw bt from N (β̄
t−1

, W t−1/N ), where β̄
t−1

is the mean of the
β t−1

n ’s.
2. Draw Wt from IW(K + N , (K I + N St−1)/(K + N )), where

St−1 = ∑
n(β t−1

n − bt )(β t−1
n − bt )′/N .

3. For each n, draw β t
n using one iteration of the MH algorithm

previously described, starting from β t−1
n and using the normal

density φ(βn | bt , W t ).

These three steps are repeated for many iterations. The resulting values
converge to draws from the joint posterior of b, W, and βn∀n. Once the
converged draws from the posterior are obtained, the mean and standard
deviation of the draws can be calculated to obtain estimates and standard
errors of the parameters. Note that this procedure provides information
about βn for each n, similar to the procedure described in Chapter 11
using classical estimation.
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As stated, the Gibbs sampler converges, with enough iterations, to
draws from the joint posterior of all the parameters. The iterations prior
to convergence are often called burn-in. Unfortunately, it is not always
easy to determine when convergence has been achieved, as emphasized
by Kass et al. (1998). Cowles and Carlin (1996) provide a description of
the various tests and diagnostics that have been proposed. For example,
Gelman and Rubin (1992) suggest starting the Gibbs sampler from sev-
eral different points and testing the hypothesis that the statistic of interest
(in our case, the posterior mean) is the same when calculated from each of
the presumably converged sequences. Sometimes convergence is fairly
obvious, so that formal testing is unnecessary. During burn-in, the re-
searcher will usually be able to see the draws trending, that is, moving
toward the mass of the posterior. After convergence has been achieved,
the draws tend to move around (“traverse”) the posterior.

The draws from Gibbs sampling are correlated over iterations even
after convergence has been achieved, since each iteration builds on the
previous one. This correlation does not prevent the draws from being
used for calculating the posterior mean and standard deviation, or other
statistics. However, the researcher can reduce the amount of correlation
among the draws by using only a portion of the draws that are obtained
after convergence. For example, the researcher might retain every tenth
draw and discard the others, thereby reducing the correlation among the
retained draws by an order of 10. A researcher might therefore specify
a total of 20,000 iterations in order to obtain 1000 draws: 10,000 for
burn-in and 10,000 after convergence, of which every tenth is retained.

One issue remains. In the MH algorithm, the scalar ρ is specified by
the researcher. This scalar determines the size of each jump. Usually,
smaller jumps translate into more accepts, and larger jumps result in
fewer accepts. However, smaller jumps mean that the MH algorithm
takes more iterations to converge and embodies more serial correlation in
the draws after convergence. Gelman et al. (1995, p. 335) have examined
the optimal acceptance rate in the MH algorithm. They found that the
optimal rate is about 0.44 when K = 1 and drops toward 0.23 as K rises.
The value of ρ can be set by the researcher to achieve an acceptance rate
in this neighborhood, lowering ρ to obtain a higher acceptance rate and
raising it to get a lower acceptance rate.

In fact, ρ can be adjusted within the iterative process. The researcher
sets the initial value of ρ. In each iteration, a trial βn is accepted or
rejected for each sampled n. If in an iteration, the acceptance rate among
the N observations is above a given value (say, 0.33), then ρ is raised.
If the acceptance rate is below this value, ρ is lowered. The value of ρ

then moves during the iteration process to attain the specified acceptance
level.
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12.6.1. Succinct Restatement

Now that the Bayesian procedures have been fully described,
the model and the Gibbs sampling can be stated succinctly, in the form
that is used in most publications. The model is as follows.
Utility:

Unjt = β ′
nxnjt + εnjt ,

εnjt iid extreme value,

βn ∼ N (b, W ).

Observed choice:

ynt = i if and only if Unit > Unjt ∀ j 
= i.

Priors:

k(b, W ) = k(b)k(W ),

where

k(b) is N (b0, S0) with extremely large variance,
k(W ) is IW (K , I ).

Conditional posteriors:

K (βn | b, W, yn) ∝ ∏
t

eβ ′
n xnynt t∑

j eβ ′
n xnjt

φ(βn | b, W ) ∀n,

K (b | W, βn ∀n) is N (β̄, W/N )), where β̄ = ∑
n

βn/N ,

K (W | b, βn ∀n) is IW

(
K + N ,

K I + N S̄

K + N

)
,

where S̄ = ∑
n(βn − b)(βn − b)′/N .

The three conditional posteriors are called layers of the Gibbs sam-
pling. The first layer for each n depends only on data for that person,
rather than for the entire sample. The second and third layers do not
depend on the data directly, only on the draws of βn , which themselves
depend on the data.

The Gibbs sampling for this model is fast for two reasons. First, none
of the layers requires integration. In particular, the first layer utilizes a
product of logit formulas for a given value of βn . The Bayesian procedure
avoids the need to calculate the mixed logit probability, utilizing instead
the simple logits conditional on βn . Second, layers 2 and 3 do not utilize
the data at all, since they depend only on the draws of βn ∀n. Only the
mean and variance of the βn’s need be calculated in these layers.
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The procedure is often called hierarchical Bayes (HB), because there
is a hierarchy of parameters. βn are the individual-level parameters for
person n, which describe the tastes of that person. Theβn’s are distributed
in the population with mean b and variance W . The parameters b and W
are often called the population-level parameters or hyper-parameters.
There is also a hierarchy of priors. The prior on each person’s βn is
the density of βn in the population. This prior has parameters (hyper-
parameters), namely its mean b and variance W, which themselves have
priors.

12.7 Case Study: Choice of Energy Supplier

We apply the Bayesian procedures to the data that were described in
Chapter 11 regarding customers’ choice among energy suppliers. The
Bayesian estimates are compared with estimates obtained through max-
imum simulated likelihood (MSL).

Each of 361 customers was presented with up to 12 hypothetical
choice situations. In each choice situation, four energy suppliers were
described, and the respondent was asked which one he would choose if
facing the choice in the real world. The suppliers were differentiated on
the basis of six factors: (1) whether the supplier charged fixed prices,
and if so the rate in cents per kilowatthour, (2) the length of contract in
years, during which the rates were guaranteed and the customer would be
required a penalty to switch to another supplier, (3) whether the supplier
was the local utility, (4) whether the supplier was a well-known company
other than the local utility, (5) whether the supplier charged time-of-
day (TOD) rates (specified prices in each period), and (6) whether the
supplier charged seasonal rates (specified prices in each season). In the
experimental design, the fixed rates varied over situations, but the same
prices were specified in all experiments whenever a supplier was said
to charge TOD or seasonal rates. The coefficient of the dummies for
TOD and seasonal rates therefore reflect the value of these rates at the
specified prices. The coefficient of the fixed price indicates the value of
each cent per kilowatthour.

12.7.1. Independent Normal Coefficients

A mixed logit model was estimated under the initial assump-
tion that the coefficients are independently normally distributed in the
population. That is, βn ∼ N (b, W ) with diagonal W . The population
parameters are the mean and standard deviation of each coefficient. Ta-
ble 12.1 gives the simulated mean of the posterior (SMP) for these param-
eters, along with the MSL estimates. For the Bayesian procedure, 20,000
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Table 12.1. Mixed logit model of choice among energy suppliers

Estimatesa MSL SMP Scaled MSL

Price coeff.: Mean −0.976 −1.04 −1.04
(.0370) (.0374) (.0396)

St. dev. 0.230 0.253 0.246
(.0195) (.0169) (.0209)

Contract coeff.: Mean −0.194 −0.240 −0.208
(.0224) (.0269) (.0240)

St. dev. 0.405 0.426 0.434
(.0238) (.0245) (.0255)

Local coeff.: Mean 2.24 2.41 2.40
(.118) (.140) (.127)

St. dev. 1.72 1.93 1.85
(.122) (.123) (.131)

Well-known coeff.: Mean 1.62 1.71 1.74
(.0865) (.100) (.0927)

St. dev. 1.05 1.28 1.12
(.0849) (.0940) (.0910)

TOD coeff.: Mean −9.28 −10.0 −9.94
(.314) (.315) (.337)

St. dev. 2.00 2.51 2.14
(.147) (.193) (.157)

Seasonal coeff.: Mean −9.50 −10.2 −10.2
(.312) (.310) (.333)

St. dev. 1.24 1.66 1.33
(.188) (.182) (.201)

aStandard errors in parentheses.

iterations of the Gibbs sampling were performed. The first 10,000 iter-
ations were considered burn-in, and every tenth draw was retained after
convergence, for a total of 1000 draws from the posterior. The mean
and standard deviation of these draws constitutes the estimates and stan-
dard errors. For MSL, the mixed logit probability was simulated with
200 Halton draws for each observation.

The two procedures provide similar results in this application. The
scale of the estimates from the Bayesian procedure is somewhat larger
than that for MSL. This difference indicates that the posterior is skewed,
with the mean exceeding the mode. When the MSL estimates are scaled
to have the same estimated mean for the price coefficient, the two sets
of estimates are remarkably close, in standard errors as well as point
estimates. The run time was essentially the same for each approach.

In other applications, e.g., Ainslie et al. (2001), the MSL and SMP es-
timates have differed. In general, the magnitude of differences depends
on the number of observations relative to the number of parameters, as
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well as the amount of variation that is contained in the observations.
When the two sets of estimates differ, it means that the asymptotics are
not yet operating completely (i.e., the sample size is insufficient for the
asymptotic properties to be fully exhibited). The researcher might want
to apply a Bayesian perspective in this case (if she is not already doing
so) in order to utilize the Bayesian approach to small-sample inference.
The posterior distribution contains the relevant information for Bayesian
analysis with any sample size, whereas the classical perspective requires
the researcher to rely on asymptotic formulas for the sampling distri-
bution that need not be meaningful with small samples. Allenby and
Rossi (1999) provide examples of the differences and the value of the
Bayesian approaches and perspective.

We reestimated the model under a variety of other distributional
assumptions. In the following sections, we describe how each method is
implemented under these alternative assumptions. For reasons that are
inherent in the methodologies, the Bayesian procedures are easier and
faster for some specifications, while the classical procedures are easier
and faster for others. Understanding these realms of relative convenience
can assist the researcher in deciding which method to use for a particular
model.

12.7.2. Multivariate Normal Coefficients

We now allow the coefficients to be correlated. That is, W is
full rather than diagonal. The classical procedure is the same except
that drawing from φ(βn | b, W ) for the simulation of the mixed logit
probability requires creating correlation among independent draws from
a random number generator. The model is parameterized in terms of the
Choleski factor of W , labeled L . The draws are calculated as β̃n =
b + Lη, where η is a draw of a K -dimensional vector of independent
standard normal deviates. In terms of computation time for MSL, the
main difference is that the model has far more parameters with full W
than when W is diagonal: K + K (K + 1)/2 rather than the 2K para-
meters for independent coefficients. In our case with K = 6, the number
of parameters rises from 12 to 27. The gradient with respect to each
of the new parameters takes time to calculate, and the model requires
more iterations to locate the maximum over the larger-dimensioned log-
likelihood function. As shown in the second line of Table 12.2, the run
time nearly triples for the model with correlated coefficients, relative to
independent coefficients.

With the Bayesian procedure, correlated coefficients are no harder
to handle than uncorrelated ones. For full W , the inverted gamma
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Table 12.2. Run times

Run time (min)

Specification MSL SMP

All normal, no correlations 48 53
All normal, full covariance 139 55
1 fixed, others normal, no corr. 42 112
3 lognormal, 3 normal, no corr. 69 54
All triangular, no corr. 56 206

distribution is replaced with its multivariate generalization, the inverted
Wishart. Draws are obtained by the procedure in Section 12.5.2. The
only extra computer time relative to independent coefficients arises in
the calculation of the covariance matrix of the βn’s and its Choleski
factor, rather than the standard deviations of the βn’s. This difference is
trivial for typical numbers of parameters. As shown in Table 12.2, the run
time for the model with full covariance among the random coefficients
was essentially the same as with independent coefficients.

12.7.3. Fixed Coefficients for Some Variables

There are various reasons that the researcher might choose to
specify some of the coefficients as fixed:

1. Ruud (1996) argues that a mixed logit with all random co-
efficients is nearly unidentified empirically, since only ratios
of coefficients are economically meaningful. He recommends
holding at least one coefficient fixed, particularly when the data
contain only one choice situation for each decision maker.

2. In a model with alternative-specific constants, the final iid ex-
treme value terms constitute the random portion of these con-
stants. Allowing the coefficients of the alternative-specific dum-
mies to be random in addition to having the final iid extreme
value terms is equivalent to assuming that the constants follow
a distribution that is a mixture of extreme value and whatever
distribution is assumed for these coefficients. If the two distribu-
tions are similar, such as a normal and extreme value, the mix-
ture can be unidentifiable empirically. In this case, the analyst
might choose to keep the coefficients of the alternative-specific
constants fixed.

3. The goal of the analysis might be to forecast substitution pat-
terns correctly rather than to understand the distribution of
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coefficients. In this case, error components can be specified
that capture the correct substitution patterns while holding the
coefficients of the original explanatory variables fixed (as in
Brownstone and Train, 1999).

4. The willingness to pay (wtp) for an attribute is the ratio of the
attribute’s coefficient to the price coefficient. If the price coef-
ficient is held fixed, the distribution of wtp is simply the scaled
distribution of the attribute’s coefficient. The distribution of wtp
is more complex when the price coefficient varies also. Further-
more, if the usual distributions are used for the price coefficient,
such as normal or lognormal, the issue arises of how to handle
positive price coefficients, price coefficients that are close to zero
so that the implied wtp is extremely high, and price coefficients
that are extremely negative. The first of these issues is avoided
with lognormals, but not the other two. The analyst might choose
to hold the price coefficient fixed to avoid these problems.

In the classical approach, holding one or more coefficients fixed is very
easy. The corresponding elements of W and L are simply set to zero,
rather than treated as parameters. The run time is reduced, since there
are fewer parameters. As indicated in the third line of Table 12.2, the
run time decreased by about 12 percent with one fixed coefficient and
the rest independent normal, relative to all independent normals. With
correlated normals, a larger percentage reduction would occur, since the
number of parameters drops more than proportionately.

In the Bayesian procedure, allowing for fixed coefficients requires the
addition of a new layer of Gibbs sampling. The fixed coefficient cannot
be drawn as part of the MH algorithm for the random coefficients for
each person. Recall that under MH, trial draws are accepted or rejected
in each iteration. If a trial draw which contains a new value of a fixed
coefficient along with new values of the random coefficients is accepted
for one person, but the trial draw for another person is not accepted, then
the two people will have different values of the fixed coefficient, which
contradicts the fact that it is fixed. Instead, the random coefficients, and
the population parameters of these coefficients, must be drawn condi-
tional on a value of the fixed coefficients; and then the fixed coefficients
are drawn conditional on the values of the random coefficients. Draw-
ing from the conditional posterior for the fixed coefficients requires an
MH algorithm, in addition to the one that is used to draw the random
coefficients.

To be explicit, rewrite the utility function as

(12.6) Unjt = α′znjt + β ′
nxnjt + εnjt ,
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where α is a vector of fixed coefficients and βn is random as before with
mean b and variance W . The probability of the person’s choice sequence
given α and βn is

(12.7) L(yn | α, βn) =
∏

t

eα′znynt t +β ′
n xnynt t∑

j eα′znjt +β ′
n xnjt

.

The conditional posteriors for Gibbs sampling are:

1. K (βn | α, b, W ) ∝ L(yn | α, βn)φ(βn | b, W ). MH is used for
these draws in the same way as with all normals, except that
now α′znjt is included in the logit formulas.

2. K (b | W, βn ∀n) is N (�nβn/N , W/N ). Note that α does not
enter this posterior; its effect is incorporated into the draws of
βn from layer 1.

3. K (W | b, βn ∀n) is IW(K + N , (K I + N S̄)/(K + N )), where
S̄ = �n(βn − b)(βn − b)′/N . Again, α does not enter directly.

4. K (α | βn) ∝ 
n L(yn | α, βn), if the prior on α is essentially
flat (e.g., normal with sufficiently large variance). Draws are
obtained with MH on the pooled data.

Layer 4 takes as much time as layer 1, since each involves calculation
of a logit formula for each observation. The Bayesian procedure with
fixed and normal coefficients can therefore be expected to take about
twice as much time as with all normal coefficients. As indicated in the
third line of Table 12.2, this expectation is confirmed in our application.

12.7.4. Lognormals

Lognormal distributions are often specified when the analyst
wants to assure that the coefficient takes the same sign for all people.
There is little change in either procedure when some or all of the coeffi-
cients are distributed lognormal instead of normal. Normally distributed
coefficients are drawn, and then the ones that are lognormally distributed
are exponentiated when they enter utility. With all lognormals, utility is
specified as

(12.8) Unjt = (eβn )′xnjt + εnjt ,

with βn distributed normal as before with mean b and variance W . The
probability of the person’s choice sequence given βn is

(12.9) L(yn | α, βn) =
∏

t

e(eβn )′xnynt t∑
j e(eβn )′xnjt

.
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With this one change, the rest of the steps are the same with both pro-
cedures. In the classical approach, however, locating the maximum of
the likelihood function is considerably more difficult with lognormal
coefficients than with normal ones. Often the numerical maximization
procedures fail to find an increase after a number of iterations. Or a
“maximum” is found and yet the Hessian is singular at that point. It is
often necessary to specify starting values that are close to the maximum.
And the fact that the iterations can fail at most starting values makes
it difficult to determine whether a maximum is local or global. The
Bayesian procedure does not encounter these difficulties, since it does
not search for the maximum. The Gibbs sampling seems to converge a
bit more slowly, but not appreciably so. As indicated in Table 12.2, the
run time for the classical approach rose nearly 50 percent with lognor-
mal relative to normals (due to more iterations being needed), while the
Bayesian procedure took about the same amount of time with each. This
comparison is generous to the classical approach, since convergence at
a maximum was achieved in this application, while in many other appli-
cations we have not been able to obtain convergence with lognormals or
have done so only after considerable time was spent finding successful
starting values.

12.7.5. Triangulars

Normal and lognormal distributions allow coefficients of un-
limited magnitude. In some situations, the analyst might want to assure
that the coefficients for all people remain within a reasonable range.
This goal is accomplished by specifying distributions that have bounded
support, such as uniform, truncated normal, and triangular distributions.
In the classical approach, these distributions are easy to handle. The only
change occurs in the line of code that creates the random draws from
the distributions. For example, the density of a triangular distribution
with mean b and spread s is zero beyond the range (b − s, b + s), rises
linearly from b − s to b, and drops linearly to b + s. A draw is created as
βn = b + s(

√
2μ − 1) if μ < 0.5 and = b + s(1 − √

2(1 − μ)) other-
wise, where μ is a draw from a standard uniform. Given draws of βn , the
calculation of the simulated probability and the maximization of the like-
lihood function are the same as with draws from a normal. Experience
indicates that estimation of the parameters of uniform, truncated normal,
and triangular distributions takes about the same number of iterations as
for normals. The last line of Table 12.2 reflects this experience.

With the Bayesian approach, the change to nonnormal distributions
is far more complicated. With normally distributed coefficients, the
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conditional posteriors for the population moments are very convenient:
normal for the mean and inverted Wishart for the variance. Most other
distributions do not give such convenient posteriors. Usually, an MH
algorithm is needed for the population parameters, in addition to the
MH algorithm for the customer-level βn’s. This addition adds consid-
erably to computation time. The issue is exacerbated for distributions
with bounded support, since, as we see in the following, the MH algo-
rithm can be expected to converge slowly for these distributions.

With independent triangular distributions for all coefficients with
mean and spread vectors b and s, and flat priors on each, the condi-
tional posteriors are:

1. K (βn | b, s) ∝ L(yn | βn)h(βn | b, s), where h is the triangular
density. Draws are obtained through MH, separately for each
person. This step is the same as with independent normals except
that the density for βn is changed.

2. K (b, s | βn) ∝ ∏
n h(βn | b, s) when the priors on b and s are

essentially flat. Draws are obtained through MH on the βn’s for
all people.

Because of the bounded support of the distribution, the algorithm is
exceedingly slow to converge. Consider, for example, the spread of the
distribution. In the first layer, draws of βn that are outside the range
(b − s, b + s) from the second layer are necessarily rejected. And in the
second layer, draws of b and s that create a range (b − s, b + s) that
does not cover all the βn’s from the first layer are necessarily rejected.
It is therefore difficult for the range to grow narrower from one iteration
to the next. For example, if the range is 2 to 4 in one iteration of the first
layer, then the next iteration will result in values of βn between 2 and 4
and will usually cover most of the range if the sample size is sufficiently
large. In the next draw of b and s, any draw that does not cover the range
of the βn’s (which is nearly 2 to 4) will be rejected. There is indeed
some room for play, since the βn’s will not cover the entire range from
2 to 4. The algorithm converges, but in our application we found that
far more iterations were needed to achieve a semblance of convergence,
compared with normal distributions. The run time rose by a factor of
four as a result.

12.7.6. Summary of Results

For normal distributions with full covariance matrices, and for
transformations of normals that can be expressed in the utility func-
tion, such as exponentiating to represent lognormal distributions, the
Bayesian approach seems to be very attractive computationally. Fixed
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coefficients add a layer of conditioning to the Bayesian approach that
doubles its run time. In contrast, the classical approach becomes faster
for each coefficient that is fixed instead of random, because there are
fewer parameters to estimate. For distributions with bounded support,
like triangulars, the Bayesian approach is very slow, while the classical
approach handles these distributions as quickly as normals.

These comparisons relate to mixed logits only. Other behavioral mod-
els can be expected to have different relative run times for the two ap-
proaches. The comparison with mixed logit elucidates the issues that
arise in implementing each method. Understanding these issues assists
the researcher in specifying the model and method that are most appro-
priate and convenient for the choice situation.

12.8 Bayesian Procedures for Probit Models

Bayesian procedures can be applied to probit models. In fact, the meth-
ods are even faster for probit models than for mixed logits. The procedure
is described by Albert and Chib (1993), McCulloch and Rossi (1994),
Allenby and Rossi (1999), and McCulloch and Rossi (2000). The method
differs in a critical way from the procedure for mixed logits. In particular,
for a probit model, the probability of each person’s choices conditional
on the coefficients of the variables, which is the analog to L(yn | βn) for
logit, is not a closed form. Procedures that utilize this probability, as in
the first layer of Gibbs sampling for mixed logit, cannot be readily ap-
plied to probit. Instead, Gibbs sampling for probits is accomplished by
considering the utilities of the alternatives, Unjt , to be parameters them-
selves. The conditional posterior for each Unjt is truncated normal, which
is easy to draw from. The layers for the Gibbs sampling are as follows:

1. Draw b conditional on W and βn ∀n.
2. Draw W conditional on b and βn ∀n. These two layers are the

same as for mixed logit.
3. For each n, draw βn conditional on Unjt ∀ j, t. These draws

are obtained by recognizing that, given the value of utility, the
function Unjt = βnxnjt + εnjt is a regression of xnjt on Unjt .
Bayesian posteriors for regression coefficients and normally dis-
tributed errors have been derived (similar to our results A and
B) and are easy to draw from.

4. For each n, i, t , draw Unit conditional on βn and the value of
Unjt for each j 
= i . As stated earlier, the conditional posterior
for each Unit is a univariate truncated normal, which is easy to
draw from with the procedure given in Section 9.2.4.

Details are provided in the cited articles.
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Bolduc et al. (1997) compared the Bayesian method with MSL and
found the Bayesian procedure to require about half as much computer
time as MSL with random draws. If Halton draws had been used, it seems
that MSL would have been faster for the same level of accuracy, since
fewer than half as many draws would be needed. The Bayesian proce-
dure for probit relies on all random terms being normally distributed.
However, the concept of treating the utilities as parameters can be gen-
eralized for other distributions, giving a Bayesian procedure for mixed
probits.

Bayesian procedures can be developed in some form or another for
essentially any behavioral model. In many cases, they provide large
computational advantages over classical procedures. Examples include
the dynamic discrete choice models of Imai et al. (2001), the joint models
of the timing and quantity of purchases due to Boatwright et al. (2003),
and Brownstone’s (2001) mixtures of distinct discrete choice models.
The power of these procedures, and especially the potential for cross-
fertilization with classical methods, create a bright outlook for the field.


