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9 Relaxing the independence assumption

© Relaxing the identical distribution assumption
@ Taste heterogeneity
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© Summary
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Mixtures

Mixture probability distribution function

Convex combination of other probability distribution functions.

Property

o Let f(&,0) be a parametrized family of distribution functions

o Let w(0) be a non negative function such that
/W(G)d@ =1
0

g(c) = /9 w(0)F (=, 0)d0

is also a distribution function.

@ Then
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Mixtures

We say that g is a w-mixture of f
o If f is a logit model, g is a continuous w-mixture of logit

o If f is a MEV model, g is a continuous w-mixture of MEV
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Mixtures

Discrete mixtures

If wi, i =1,...,n are non negative weights such that

zn:W,' =1
i=1

then
n
g(e) = Z W,'f(&, (9,')
i=1
is also a distribution function where 6;, i = 1, ..., n are parameters.

We say that g is a discrete w-mixture of f.
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Example: discrete mixture of normal distributions

25 T T T T T T T
N(5,0.16) ——

N(8,1)
0.6 N(5,0.16) + 0.4 N(8,1) *+++se+

15 E 1

0 L
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Example: discrete mixture of binary logit models
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0.4 P(1|s=1,x) + 0.6 P(1|s=2,x) **
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Mixtures Definition

Mixtures

General motivation

Generate flexible distributional forms

For discrete choice
@ correlation across alternatives
@ alternative specific variances
@ taste heterogeneity
° ...
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Continuous Mixtures of logit

Combining probit and logit

Error components
Un = Vin + 5‘” + Vin‘\

i.i.d EV (|O®Z tractability

Normal distribution (probit): flexibility

(VST P @ AW RO A S XS S S I Mixture Models — Simulation-based Estimati 9 / 80



S
Logit

Specification of the utility functions

Uawto = BXauto +  Vauto
Upus = BXbus +  Vbus
Usu bway — /6 Xsu bway +  Vsy bway

Distributional assumption

v i.i.d. extreme value

Choice model
eBXauto

Pr(auto|X,C) = eBXauto - @BXous | @B Xsubway
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Normal mixture of logit

Specification of the utility functions

Usuto = BXauto + auto +  Vauto
Upus = BXbus +  Sbus +  Vbus
Usubway = 5Xsubway + gsubway + Vsubway

Distributional assumptions
@ v i.i.d. extreme value
° &£~ N(0,X)

Choice model

eﬁxauto“l’fauto
Pr(auto| X, &) =

eBXauto"Ffauto -|— eIBXbus""{bus —|— eﬂXsubway+£subway

P(auto|X) = / Pr(auto|X, £)F(€)de
3
R G L X NS X R M Vixture Models — Simulation-based Estimati !
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Calculation

Choice model

P(auto|X) = /éPr(auto|X,§)f(§)d§

Calculation
@ Integral has no closed form.

@ If one dimension is involved, numerical integration can be used.

@ With more dimensions, Monte Carlo simulation must be used.
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Simulation

In order to approximate
P(auto| X) = / Pr(auto|X, £)F(€)de
3
@ Draw from f(&) to obtain ry, ..., rr
o Compute P(auto|X) ~ P(auto|X) = %Zle P(auto|X, ry) =

1 R eﬁXauto‘f'rlk
E ; eﬂXauto+r1k =+ e;BXbus"Fer —+ eﬁXsubway+r3k

(VST P @ AW RO A S XS S S I Mixture Models — Simulation-based Estimati 13 / 80



Simulation

Can approximate as close as needed

R
1
m - Z P(auto| X, rk).

P(auto|X) = i
R—o0 -1

In practice

o Efficient methods to draw from the distribution.

@ R must be large enough.
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Relaxing the independence assumption
Outline

© Relaxing the independence assumption
@ Nesting
@ Cross-nesting
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Relaxing the independence assumption Nesting

Capturing correlations: nesting

Specification of the utility functions
Uauto = BXauto +  Vauto
Upus = BXbus 1+ OtransitMtransit T  Vbus
Usubway = 5Xsubway +  Otransittransit +  Vsubway
W
Distributional assumptions
@ v i.i.d. extreme value,
2 _
@ Neransit ~ N(0,1), o7, =cov(bus,subway)
v
Choice model
auto
eBX:
Pr(auto|X i) =
( | ’T/tranSIt) eBXauto + eﬁXbus+Utransit77transit + e,BXsubway+Utransit77transit
16 / 80
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Relaxing the independence assumption Nesting

Nesting structure

Example: residential telephone

Ct. BM Ct. SM Ct. LF Ct. EF j¢ oM OF
BM |1 0 0 0 In(cost(BM)) nm O
SM | 0 1 0 0 In(cost(SM)) nm O
LF |0 0 1 0 In(cost(LF)) 0 nF
EF |0 0 0 1 In(cost(EF)) 0  ne
MF | 0 0 0 0 In(cost(MF)) 0  ne
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Relaxing the independence assumption Nesting

Nesting structure

Identification issues
@ If there are two nests, only one ¢ is identified

@ If there are more than two nests, all o's are identified

Walker (2001)
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Nesting
Results with 5000 draws

NL NML NML NML NML
o =0 oy =0 oF =0
L -473.219 -472.768 -473.146 -472.779 -472.846
Estim. Scaled Estim. Scaled Estim. Scaled Estim. Scaled Estim. Scaled
Ct .BM -1.78 1.00 -3.81 1.00 -3.79 1.00 -3.81 1.00 -3.81 1.00
Ct. EF -0.558 0.313 -1.20 0.314 -1.19 0.313 -1.20 0.314 -1.20 0.314
Ct. LF -0.512 0.287 -1.10 0.287 -1.09 0.287 -1.09 0.287 -1.09 0.287
Ct. SM -1.41 0.788 -3.02 0.791 -3.00 0.790 -3.01 0.791 -3.02 0.791
Bc -1.49 0.835 -3.26 0.855 -3.24 0.855 -3.26 0.855 -3.26 0.854
HFLAT 229
HMEAS 2.06
oF 3.02 0.00 3.06 2.17
om 0.530 3.02 0.00 2.17
o} + oy 9.40 9.15 9.37 9.43
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Relaxing the independence assumption Nesting

Comments

@ The scale of the parameters is different between NL and the mixture
model

@ Normalization can be performed in several ways

o op=0
e opy=0
@ OF =0Mm

Final log likelihood should be the same
But... estimation relies on simulation
Only an approximation of the log likelihood is available

Final log likelihood with 50000 draws:
Unnormalized: -472.872 oy = ofF: -472.875
op=0: -472.884 op=0: -472.901

e 6 ¢ ¢
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Relaxing the independence assumption Cross-nesting

Cross nesting

Motorized Private

Bus Train Car Ped. Bike
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Relaxing the independence assumption Cross-nesting

Cross nesting

Specification

Uuis = Vhus +&1 +Ebus
Utraln = Vtrain +€1 +Etrain
Uar = Vear +&1 +& +ear
Uped = Vped +€2 +Eped
Uike = Vhike +&  +ebike

Choice model

P(car) = /5 1 /g P(carlér. &2)F(€1)F(&2)dEadty
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Relaxing the independence assumption Cross-nesting

Identification issue

@ Not all parameters can be identified

@ For logit, one ASC has to be constrained to zero

@ lIdentification of NML is important and tricky

@ See Walker, Ben-Akiva & Bolduc (2007) for a detailed analysis
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Relaxing the identical distribution assumption
Outline

© Relaxing the identical distribution assumption
@ Normalization
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Relaxing the identical distribution assumption

Alternative specific variance

Logit: i.i.d. error terms

@ In particular, they have the same variance
Uin = ﬁTXin + ASCI + €in

@ cjpiid. EV(0, 1) = Var(ein) = 72/642

Relax the identical distribution assumption
Uin = B xin + ASC; + 0 + €in
where & ~ N(0,1)

Variance

2

T
Var(oi&i +¢;) = 02 + ——
ar(oi&i +€in) = 07 + 6.2
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Relaxing the identical distribution assumption

Alternative specific variance

Identification issue
@ Not all os are identified
One of them must be constrained to zero
Not necessarily the one associated with the ASC constrained to zero

°
°
@ In theory, the smallest o must be constrained to zero
@ In practice, we don't know a priori which one it is

o

Solution:

@ Estimate a model with a full set of os
@ Identify the smallest one and constrain it to zero.
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Relaxing the identical distribution assumption

Alternative specific variance

Example with Swissmetro
‘ ASC_CAR ASC_SBB ASC_SM B_.COST B-FR B-TIME

Car 1 0 0 cost 0 time
Train 0 0 0 cost freq. time
Swissmetro 0 0 1 cost freq. time

+ alternative specific variance
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Relaxing the identical distribution assumption

Comparison (using 500 draws)

Logit ASV ASV norm.

L -5315.39 -5240.414 -5240.414

Estim.  Scaled Estim. Scaled Estim. Scaled

ASC_CAR 0.189 -0.175 0.248 -0.140 0.248 -0.140
ASC_SM 0.451 -0.418 0.900 -0.508 0.901 -0.509

B_COST | -1.08 1.00 -1.77 1.00 -1.77 1.00
B_FR | -5.35 4.95 -7.78 4.40 -7.78 4.40
B_TIME | -1.28 1.19 -1.71 0.966 | -1.71 0.966
SIGMA_CAR 0.0107
SIGMA_TRAIN 0.0284 0.0282
SIGMA_SM -3.21 -3.22
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Relaxing the identical distribution assumption Normalization

|dentification issue: process

Examine the variance-covariance matrix
© Specify the model of interest
@ Take the differences in utilities
© Apply the order condition: necessary condition

© Apply the rank condition: sufficient condition

©Q Apply the equality condition: verify equivalence
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bz
Heteroscedastic: specification

Model
Ui = px1 +o01& +e1
U = Bxo +026 +eo
U3 = Bx3 +03§3 +e3
Us = Bxs +046s  +eg

where & ~ N(0,1), e; ~ EV(0, 1)

Covariance matrix

oF + v/ , 0 . 0 0

_ 0 o5 +/1 0 0

Cov(U) = 0 0  3+y/mE 0
0 0 0 o3+ v/ u?
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Normalization
Heteroscedastic: differences

Utility differences
Ui —Us = B(x1—xa)+ (0161 — 04&a) + (61 — €4)

U2—Us = Bxa—x)+ (0262 — 048a) + (62 — €1)
Us —Us = B3 —xa)+ (038 — 04€a) + (3 — €4)

Covariance of utility differences

Cov(AU) =
of +oz+2y/u*  oj+/u’ o3 + /1
0; +v/ ui o3 +203 + 272/ 1 ) o3 + v/ 12 )
o3 +/n o3 +/p o3 +0;+2v/u
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: order condition

Upper bound
@ S is the number of estimable parameters

@ J is the number of alternatives

S < J(J-1) q
2
@ It represents the number of entries in the lower part of the
(symmetric) var-cov matrix
@ minus 1 for the scale
@ J=4implies S <5
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: rank condition

Idea
@ Number of estimable parameters =

@ number of linearly independent equations

@ -1 for the scale

Cov(AU) =

o +2U£ N 272/M2 2 2 2
of+/1 o3+ 043 +2y/n

o7 + /1 oF + /12 (05 + 07 + 29/ 142

dependent scale
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: rank condition

Three parameters out of five can be estimated

Formally...
O Identify unique elements of Cov(AU)
@ Compute the Jacobian wrt 0%, 03, 03, 03, v/
© Compute the rank

0% + 02 + 27/ u? 10012
oé+a§+2y/u2 01012
03 + 03 + 2v/u? 00112

o3 + v/ u? 00011

S=Rank-1=3
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: equality condition

Normalization
@ We know how many parameters can be identified
@ There are infinitely many normalizations
@ The normalized model is equivalent to the original one

@ Obvious normalizations, like constraining extra-parameters to 0 or
another constant, may not be valid
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: equality condition

Error components
Up = /BTXn + Lp&n + €n
Cov(U,) = Loly + (v
Cov(AjUn) = AjLal T AT+ (v/i2) 4]
Notations
1 -1 0
A2(o -1 1)
Cov(A;U,) = Q, = X, + Iy
Q?'orm — ZI[‘I,OFm + rzorm
36 / 80
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: equality condition

The following conditions must hold

@ Covariance matrices must be equal
norm
Q,=Q)

@ X P°"™ must be positive semi-definite
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: equality condition

Example with 3 alternatives

U = Bx1 o1& +e1
U, = Bx 4026 —+€5
Us = Bxs +03§3  +e3

02 4+ 02 + 29/ 12 >
Cov(A3U) =Q = L3

(450) ( o3 +/1 oF 403 +2v/u
o Parameters: {o1,02,03, 1}

@ Rank condition: § =2

@ 1 is used for the scale
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: equality condition

Change of variables
@ Denote v; = 0212 (scaled parameters)
@ Normalization condition: 13 = K
Q- < (v1 +v3 +27y)/p° >
(vs+7)/1> (2 +vs+2y)/1

qrom _ < (' + K +29)/uy )
(K+7)/p3 (A + K+29)/u3

where index N stands for “normalized”
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: equality condition

First equality condition: = Qmo™m

s+ N/ = (K+)/u3
(n+vs+29)/12 = (W +K+29)/1
(2 +v3+27)/K2 = (W +K+29)/u3

that is, writing the normalized parameters as functions of others,

= pAK+7)/(v3+7)
v = (K+7)(+vs+29)/(13+7) - K—2y
(

v = (K+9)(a+vs+27)/(vs+7) — K—2y
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: equality condition

Second equality condition

1 w00
Znorm — — Z/é\l 0
v\ 0 o0 K
must be positive semi-definite, that is
pn >0, v >0, v >0 K>o0.

Putting everything together, we obtain

k> Wmm g,
vito

41/ 80
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Relaxing the identical distribution assumption Normalization

Heteroscedastic: equality condition

Condition to be verified for the normalization to be valid

(v3 —vi)y

K>
vi+y

L i=1,2

o If 13 <wj, i =1,2, then the rhs is negative, and any K > 0 would do.
Typically, K = 0.

@ If not, K must be chosen large enough

@ In practice, always select the alternative with minimum variance.
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Outline

@ Taste heterogeneity
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Taste heterogeneity

Motivation
@ Population is heterogeneous
@ Taste heterogeneity is captured by segmentation

@ Deterministic segmentation is desirable but not always possible

@ Distribution of a parameter in the population
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Taste heterogeneity

Random parameters

U = BeTi +BcCi+ei
U = BT+6G+ e

Let B; ~ N(B:,0?), or, equivalently,
Be = fBr + o€, with € ~ N(0,1).

U = BeTi+ 0T+ BcCi+e
U = BiTj+0:lTj+ PG+ ¢
If £; and ¢; are i.i.d. EV and £ is given, we have

Bt Tit ot Ti+BcC

plile) — ’ d
(/|§) eBe Titol Ti+p:Ci eﬁtTj-i—Uthj-i-ﬁcCﬂ an

HOZAH%V@%-
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Taste heterogeneity

Random parameters

Example with Swissmetro
‘ASC,C/-\R ASC.SBB ASCSM B_.COST B.FR B_TIME

Car 1 0 0 cost 0 time
Train 0 0 0 cost freq.  time
Swissmetro | 0 0 1 cost freq.  time

B_TIME randomly distributed across the population, normal distribution

v
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Taste heterogeneity

Random parameters

Estimation results

Logit RC
L | -5315.4 | -5198.0
ASC_.CARSP | 0.189 | 0.118
ASCSM.SP | 0451 | 0.107
B.COST | -0.011 | -0.013
B_FR | -0.005 | -0.006
B_TIME | -0.013| -0.023

S_TIME 0.017
Prob(B_TIME > 0) 8.8%
x> 234.84
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Taste heterogeneity

Random parameters

25 T T
Distribution of B_TIME ———

10 |+ B

_—

e

0 — Il Il Il
-0.08 -0.06 -0.04 -0.02 (o] 0.02 0.04

(VST P @ AW RO A S XS S S I Mixture Models — Simulation-based Estimati 48 / 80




Taste heterogeneity

Random parameters

Example with Swissmetro
‘ASC,C/-\R ASC.SBB ASCSM B_.COST B.FR B_TIME

Car 1 0 0 cost 0 time
Train 0 0 0 cost freq.  time
Swissmetro | 0 0 1 cost freq.  time

B_TIME randomly distributed across the population, log normal
distribution )
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Taste heterogeneity

Random parameters

[Utilities]

11 SBB_SP TRAIN_AV_SP ASC_SBB_SP * one +
B_COST * TRAIN_COST +
B_FR * TRAIN_FR

21 SM_SP SM_AV ASC_SM_SP * omne +
B_COST * SM_COST +
B_FR * SM_FR

31 Car_SP CAR_AV_SP  ASC_CAR_SP * one +
B_COST * CAR_CO

[GeneralizedUtilities]

11 - exp( B_TIME [ S_TIME ] ) * TRAIN_TT
21 - exp( B_TIME [ S_TIME ] ) * SM_TT

31 - exp( B_TIME [ S_TIME ] ) * CAR_TT
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Taste heterogeneity

Random parameters

Estimation results

Logit RC-norm. RC-logn.

-6315.4 -5198.0 -5215.81

ASC_CAR_SP 0.189 0.118 0.122

ASC_SM_SP 0.451 0.107 0.069

B_COST | -0.011 -0.013 -0.014

B_FR | -0.005 -0.006 -0.006
B_TIME | -0.013 -0.023 -4.033 -0.038
S_TIME 0.017 1.242 0.073

Prob(3 > 0) 8.8% 0.0%

X2 234.84  199.16
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Taste heterogeneity

Random parameters

40

Logr‘wrmal Distribu‘tion of B_TIME‘ -
Normal Distribution of B_TIME -{-----

35

30 -

20

15 | g
" |Lognormal mean

/ Normal mean .
10 L .

0 Il Il Il Il Il Il
-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
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Taste heterogeneity

Random parameters

Example with Swissmetro
‘ASC,CAR ASC.SBB ASCSM B_.COST B.FR B_.TIME

Car 1 0 0 cost 0 time
Train 0 0 0 cost freq.  time
Swissmetro | 0 0 1 cost freq.  time

B_TIME randomly distributed across the population, discrete distribution

'D(ﬁtime:B) = w1 'D(ﬁtimezo):(«@ =1—-w
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Taste heterogeneity

Random parameters

Syntax for Biogeme

[DiscreteDistributions]
B_TIME < B_TIME_1 ( W1 ) B_TIME_2 ( W2 ) >

[LinearConstraints]
Wi +W2=1.0
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Taste heterogeneity

Random parameters

Estimation results

Logit RC-norm. RC-logn. RC-disc.
-5315.4 -5198.0  -5215.8 -5191.1
ASC_CAR_SP 0.189 0.118 0.122 0.111
ASC_SM_SP 0.451 0.107 0.069 0.108
B_.COST -0.011 -0.013 -0.014 -0.013
B_FR  -0.005 -0.006 -0.006 -0.006
B_TIME -0.013 -0.023 -4.033 -0.038 -0.028
0.000

S_TIME 0.017 1.242 0.073
W1 0.749
W2 0.251
Prob(5 > 0) 8.8% 0.0% 0.0%
X2 234.84  199.16 248.6
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Outline

© Latent classes
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Latent classes

Latent classes

Capture unobserved heterogeneity
They can represent different:
@ Choice sets
Decision protocols

Tastes

°
°
@ Model structures
°

etc.
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Latent classes

Latent classes

Model structure
S
Pa(ilC) =Y Pa(i[Cn, 5)Qn(s)
s=1

@ Py(i|Cp,s) is the class-specific choice model

@ probability of choosing i given that the individual n belongs to class s
@ Qn(s) is the class membership model

o probability of belonging to class s
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Outline

© Summary
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Summary
Logit mixtures models

@ Computationally more complex than MEV
@ Allow for more flexibility than MEV

Continuous mixtures

Alternative specific variance, nesting structures, random parameters

Pa(i) = /£ Pa(ilE)F(€)de

Discrete mixtures

Latent classes of decision makers

S
Pn(/‘cn) = Z Pn(i|cn7 S)Q"(S)

s=1
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Tips for applications

@ Be careful: simulation can mask specification and identification issues

@ Do not forget about the systematic portion
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Appendix: Simulation

How to calculate?

P(i) = / Pr(il€)F(£)de

§

No closed form formula )

Monte Carlo simulation
@ Randomly draw numbers such that their frequency matches the

density ()
o Let &1, .. &R be these numbers

@ The choice model can be approximated by

R
R; ilr), as I|_r>noo—ZPr /Pr(,yg)f(g)dg

— 3
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Appendix: Simulation

Approximation

1R
P(i) ~ B Z Pr(i|r).
r=1

The kernel is a logit model, easy to compute
eV1n+r

Pr(l’r) - ev1n+r —+ ev2n+r —+ ev3n

Therefore, it amounts to generating the appropriate draws.
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Appendix: Simulation

Pseudo-random numbers generators

Although deterministically generated, numbers exhibit the properties of
random draws

Uniform distribution

Standard normal distribution

Transformation of standard normal

Inverse CDF

Multivariate normal

e © 6 ¢ ¢
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Appendix: Simulation

Uniform distribution

@ Almost all programming languages provide generators for a uniform
u(o,1)
o If ris a draw from a U(0, 1), then

s=(b—a)r+a

is a draw from a U(a, b)
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Appendix: Simulation

Standard normal
o If r; and r, are independent draws from U(0, 1), then

s1 =V —2Inrsin(27n)
s2 = v/—2Inr cos(27r,)

are independent draws from N(0, 1)
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Appendix: Simulation: standard normal

Histogram of 100 random samples from a univariate
Gaussian PDF with unit variance and zero mean
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Appendix: Simulation: standard normal

Histogram of 500 random samples from a univariate
Gaussian PDF with unit variance and zero mean
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Appendix: Simulation: standard normal

Histogram of 1000 random samples from a univariate

Gaussian PDF with unit variance and zero mean
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Appendix: Simulation: standard normal

Histogram of 5000 random samples from a univariate
Gaussian PDF with unit variance and zero mean
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Appendix: Simulation: standard normal

Histogram of 10000 random samples from a univariate
Gaussian PDF with unit variance and zero mean
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Appendix: Simulation

Normal distribution
If ris a draw from N(0,1), then
s=br+a

is a draw from N(a, b?)

Log normal distribution
If r is a draw from N(a, b?), then

el’

is a draw from a log normal LN(a, b?) with mean ea+(5*/2) 3nd variance

e2a+b2 (eb2 N 1)
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Appendix: Simulation

Inverse CDF
o Consider a univariate r.v. with CDF F(¢)
@ If F is invertible and if r is a draw from U(0,1), then

s=FYr)

is a draw from the given r.v.

o Example: EV with

Fle)=e*" F(r)=—In(=Inr)
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Appendix: Simulation: inverse CDF

CDF of the Extrer‘ne Value distribution‘
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Appendix: Simulation

Multivariate normal
If r1,...,r, are independent draws from N(0, 1), and
rn
r =
rn
then
s=a-+Lr
is a vector of draws from the n-variate normal N(a, LLT), where
@ L is lower triangular, and
@ LLT is the Cholesky factorization of the variance-covariance matrix

v
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Appendix: Simulation

Example

11 0 0
L=t flpn O
l31 l3p (33

s1 = fun
s = lun + Llpn
s3 = 311 + fl3xrn + 3313
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Appendix: Simulation

Mixtures of logit
P(auto| X) = / Pr(auto|X, £)F(€)de
3
@ Draw from f(&) to obtain ry, ..., rr
o Compute P(auto|X) ~ P(auto|X) = %Zle P(auto|X, ry) =

1 R eﬁXauto‘f'rlk
E ; eﬂXauto+r1k + eIBXbus"Fer + eﬁXsubway+r3k
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Appendix: Maximum simulated likelihood

Solve

N J

mé'axﬁ(ﬁ) = Z Z)ﬁ'n'” P(j; 0)

n=1 \ j=1

where yj, = 1 if ind. n has chosen alt. j, 0 otherwise.

Vector of parameters 6 contains
@ usual (fixed) parameters of the choice model
@ parameters of the density of the random parameters

@ For instance, if 3; ~ N(uj,af), pj and o are parameters to be
estimated
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Appendix: Maximum simulated likelihood

Warning
@ P(j;0) is an unbiased estimator of P(j; )

E[Pa(j; 0)] = P(j: 6)
o InP(j;0) is not an unbiased estimator of In P(j; )
In E[P(j; 6] # Elin P(j; 0)]

@ Under some conditions, it is a consistent (asymptotically unbiased)
estimator, so that many draws are necessary.
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Appendix: Maximum simulated likelihood

Properties of MSL
o If R is fixed, MSL is inconsistent
o If R rises at any rate with N, MSL is consistent
o If R rises faster than /N, MSL is asymptotically equivalent to ML.
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