Computer Lab III

Summary

Evanthia Kazagli, Anna Fernandez Antolin, Xinjun Lai

– p. 1/16

Today

- Administrative stuff (rules, groups, number of pages, ...)
- Summary of what you've learnt so far
 - Types of variables (generic, specific, socioeconomic)
 - Tests (likelihood ratio test, t-test)
- Help: dealing with missing data
- You'll work on your first assignment

Administrative stuff

- Report is **compulsory**:
 - No report, no final exam!
- **Deadline** to submit the report: Friday, October 11, 2013, at noon
- Submit by email to Eva and Anna:
 - .html file (from BIOGEME)
 - .pdf (or Word) document containing a description of the model specification with its underlying hypotheses
- 1-2 pages.
- Data set: Mode choice in Switzerland (Optima)
- Groups of 4 persons, following the list in the email you received

Data set: Mode choice in Switzerland (Optima)

- Data set "optimaTOT3_valid.dat" on the website:
- Description of the data and variables available on the website:
 - General description
 - List of variables

- Motivation: study mode choice in low density areas of switzerland
- Data-collection: Revealed Preferences (RP)
- Survey-type: Mail survey
- Collects 'loops' = cyclical sequence of trips
- database with 1906 observations
 - trip features
 - socioeconomic variables

Table 1: extract 'optimaTOT3_valid.dat'

ID	TripPurpose	Choice	CoutTP1	CoutAutoCHF	age	CodeLangue
10350017	1	1	12.4	4.54	27	1
10350025	3	0	3	0.64	-1	1
10350075	1	1	24	3.38	63	1
10350085	1	1	10.8	1.66	57	1
10350086	1	1	9.6	2.71	58	1
10350100	3	1	3	1.63	80	1
10350120	3	1	24.8	6.98	64	1
10350125	3	1	4.8	0.99	68	1
10350125	3	1	2.2	0.19	68	1

Types of explanatory variables

- In linear formulation of utility function, βs are called coefficients or parameters. Different kinds:
 - Alternative specific constants (ASC)
 - Generic
 - Appearing in all utility functions with equal coefficients
 - Assume all choice makers have the same marginal utility between the alternatives
 - Alternative specific
 - Different coefficients between utility functions
 - Capture the marginal utility specific to an alternative
 - Alternative-specific socioeconomic
 - Reflect differences in preference as functions of characteristics of the decision-maker.

Goal: test alternative specifications of the explanatory variables in the utility functions

- t-test
- Likelihood ratio test

Tests: t-test

- Goal: test whether a particular parameter in the model differs from some known constant, often zero
- Valid only asymptotically (since we work with nonlinear models)
- t-test > 1.96 means significant parameter (95% confidence interval)

Tests: Likelihood ratio test

- Goal: compare different specifications (i.e., models)
- Restricted model (e.g., some $\beta s = 0$) (null hypothesis) vs unrestricted model
- Number of degrees of freedom: difference between the number of estimated coefficients in the restricted and unrestricted models.
- χ^2 test with this number of freedom: -2($\mathcal{L}(\hat{\beta}_{unrestricted}) - (\hat{\beta}_{restricted}))$

Interpretation

- Is the coefficient significant?
- Sign
 - Coefficients are expected to have a behavioral meaning: a negative coefficient means lower utility when the variable is high, and higher utility when the variable is low, e.g. travel time, cost.
 - The other way around: same interpretation

Dealing with missing data

- Section [Exclude] tells BIOGEME not to consider some observations.
- **Example of** binary_generic_boeing.mod
 - [Exclude] ArrivalTimeHours_1 == -1 || BestAlternative_3
 - Excludes missing data (-1) for variable ArrivalTimeHours_1
 - Excludes alternative BestAlternative_3 (1 Stop with 2 different airlines)
- The same needs to be done for the Optima case study: exclude soft modes, and keep public transportation and cars

Dealing with missing data

- **Example**: if want to use gender variable (q17_gender)
- Solution 1
 - Exclude missing data (-1 and 99) from whole data set
 - [Exclude] ArrivalTimeHours_1 == -1 || BestAlternative_3 || q17_gender == 99 || q17_gender == -1

Dealing with missing data

- **Example**: if you want to use the gender variable (q17_gender)
- Solution 2 (BETTER)
 - Measure taste heterogeneity between men and women by introducing a term for missing data in utility
 - [Exclude] section identical
 - [Exclude] ArrivalTimeHours_1 == -1 || BestAlternative_3
 - In section [Expressions] define:
 - MissingGender = ((q17_Gender == -1) + (q17_Gender == 99)) > 0
 - In section [Utilities] specify:
 - + Male_Opt2 * Male + MDGender * MissingGender

Today's plan

Group work for your first assignment:

- gather as a group
- work on the Optima dataset
- generate .mod file (base)
- test an idea / hypothesis

Lab assignment: Your goals for the report

- 1. Work with your group on your own specification of a Binary Logit on the Optima mode choice data;
- 2. Examine the data & and the variables' description;
- 3. Write your own model with new variables;
- 4. Formulate your own hypothesis;
- 5. Test your hypothesis;
- 6. Back to 3 until you obtain a satisfactory model specification;
- 7. Write a report (max double-sided page report);
- 8. Send your results before the dealine:
 - the .html file
 - .mod file
 - .pdf file.

