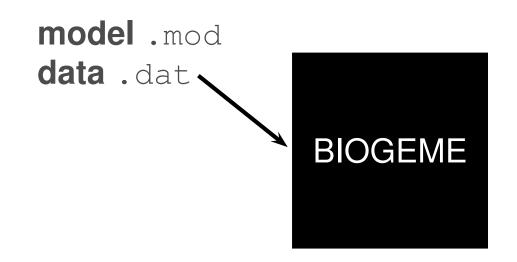
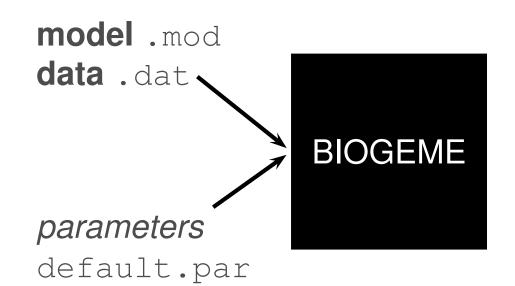
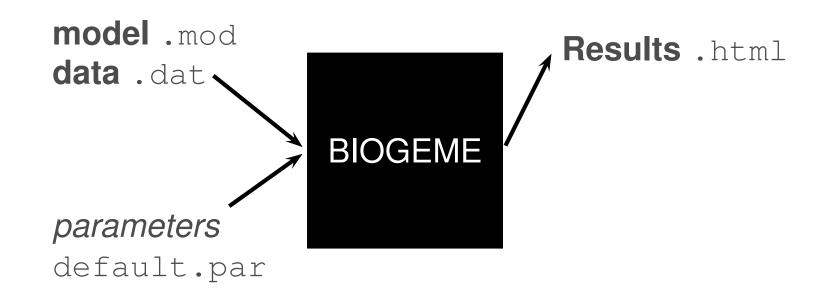
Computer Lab II

Further introduction to Biogeme Binary Logit Model Estimation Evanthia Kazagli, Bilge Atasoy, Marija Nikolic

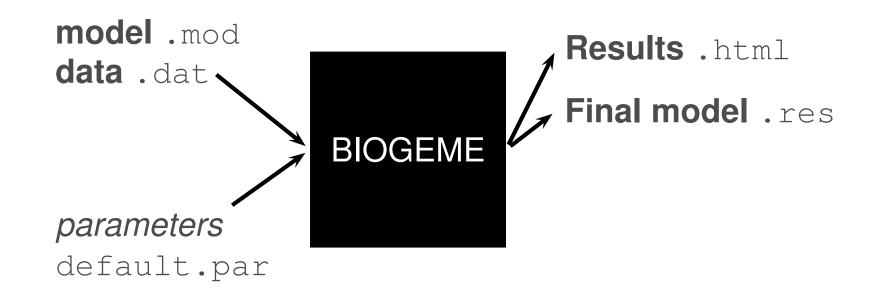
- Further introduction to BIOGEME
- Estimation of Binary Logit models




– p. 3/27



– p. 3/27



BIOGEME - Data file

- File extension .dat
- First row contains column / variable names
- One observation per row
- Each row must contain a choice indicator
- Example with the Netherlands transportation mode choice data: choice between car and train

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
• • •					
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
• • •	Unique ide	entifier of obs	servations		
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
• • •		Choice indi	cator, 0: car	and 1: train	
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

BIOGEME - Model file

- File extension .mod
- Must be consistent with data file
- Contains deterministic utility specifications, model type etc.
- The model file contains different *sections* describing different elements of the model specification

BIOGEME - Model file

• How can we write the following deterministic utility functions for BIOGEME?

$$V_{car} = ASC_{car} + \beta_{time}time_{car} + \beta_{cost}cost_{car}$$

 $V_{\text{rail}} = \beta_{\text{time}} \text{time}_{\text{rail}} + \beta_{\text{cost}} \text{cost}_{\text{rail}}$

[Choice] choice

[Beta]

// Name	DefaultValue	LowerBound	UpperBound	status
ASC_CAR	0.0	-100.0	100.0	0
ASC_RAIL	0.0	-100.0	100.0	1
BETA_COST	0.0	-100.0	100.0	0
BETA_TIME	0.0	-100.0	100.0	0

[Utilities]

//Id	Name	Avail	linear-in-parameter expression
0	Car	one	ASC_CAR * one + BETA_COST * car_cost +
			BETA_TIME * car_time
1	Rail	one	ASC_RAIL * one + BETA_COST * rail_cost +
			BETA_TIME * rail_time

BIOGEME - Model file

[Cho choi	oice] .ce					
[Bet	al					
-	lame	Dei	faultValue	LowerBound	UpperBound	status
ASC_	CAR	0.()	-100.0	100.0	0
ASC_	RAIL	0.()	-100.0	100.0	1
BETA	_COST	0.()	-100.0	100.0	0
BETA_TIME		0.()	-100.0	100.0	0
	lities Name		linear-in-	-parameter (expression	
0	Car	one	ASC_CAR *	one + BETA_	_COST * car_	cost +
			BETA_TIME	* car_time		
1	Rail	one	ASC_RAIL	* one + BETA	A_COST * rai	l_cost +
			BETA_TIME	<pre>* rail_time</pre>	9	
\$	CRANSI					

[Choice] choice

[Beta]

// Name	DefaultValue	LowerBound	UpperBound	status
ASC_CAR	0.0	-100.0	100.0	0
ASC_RAIL	0.0	-100.0	100.0	1
BETA_COST	0.0	-100.0	100.0	0
BETA_TIME	0.0	-100.0	100.0	0

[Utilities]

//Id	Name	Avail	linear-in-parameter expression
			ASC_CAR * one + BETA_COST * car_cost +
0	Car		
			BETA_TIME * car_time
1	Rail	one	ASC_RAIL * one + BETA_COST * rail_cost +
			BETA_TIME * rail_time

[Choice]	What is one?					
choice	Which is the type of model?					
[Beta]						
// Name	DefaultValue	LowerBound	UpperBound	status		
ASC_CAR	0.0	-100.0	100.0	0		
ASC_RAIL	0.0	-100.0	100.0	1		
BETA_COST	0.0	-100.0	100.0	0		
BETA_TIME	0.0	-100.0	100.0	0		
[Utilities]						
//Id Name Av	ail linear-in-	-parameter e	expression			
0 Car on	e ASC_CAR *	one + BETA_	_COST * car_	_cost +		
	BETA_TIME	* car_time				
1 Rail on	e ASC_RAIL	* one + BETA	A_COST * rai	l_cost +		
	BETA_TIME	<pre>* rail_time</pre>	2			

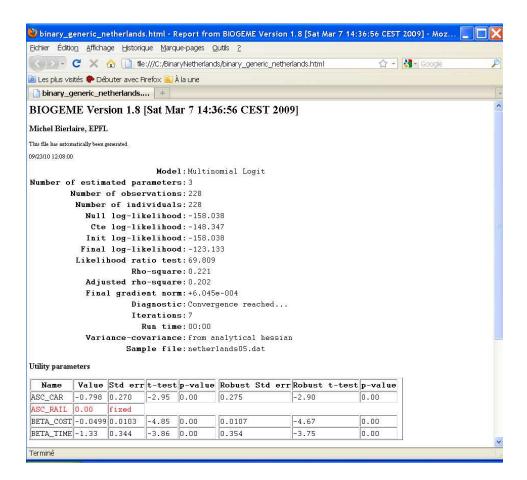
BIOGEME - Model file

[Expressions]
// Define here arithmetic expressions for name that are not directly
// available from the data
one = 1

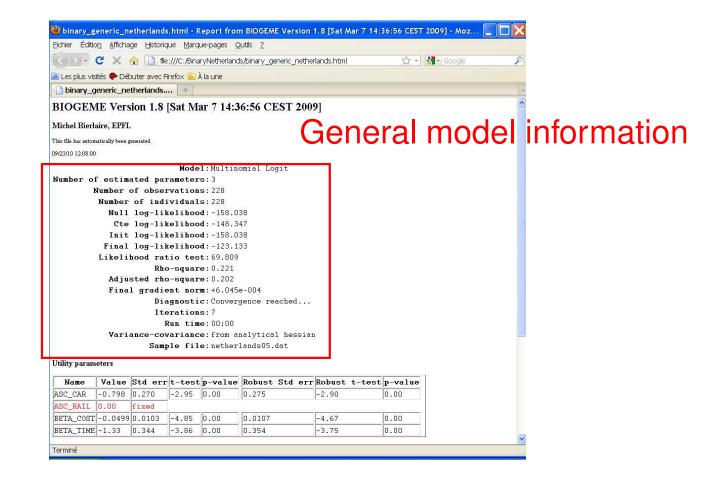
[Model]
// Currently, only \$MNL (multinomial logit), \$NL (nested logit), \$CNL
// (cross-nested logit) and \$NGEV (Network GEV model) are valid keywords
//
^//

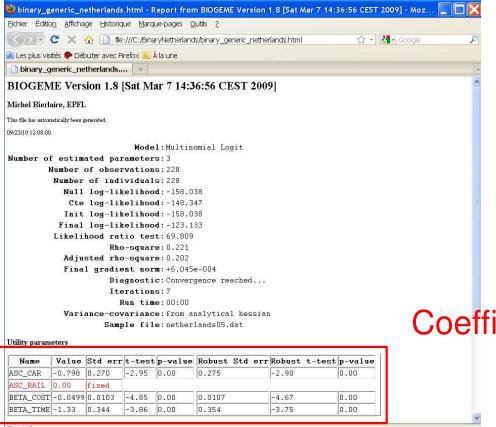
\$MNL

- p. 15/27


Model and Data Files

- How to read and modify model files? How to read data files?
 - GNU Emacs, vi, TextEdit (Mac) or Wordpad (Windows)
 - Notepad (Windows) should not be used!


BIOGEME - Results - Netherlands dataset


BIOGEME - Results

BIOGEME - Results

Terminé

Coefficient estimates

– p. 19/27

Today

- Further introduction to BIOGEME
- Estimation of Binary Logit models

- p. 20/27

Binary Logit Case Study

- Available datasets:
 - Airline itinerary choice (Boeing)
 - Choice-Lab marketing
 - Mode choice in Netherlands
 - Residential Telephone Services
 - Mode choice in Switzerland (Optima)
- Descriptions available on the course web site
- Optima dataset does not contain .mod files. A specification has to be proposed as an assignment (next lab session).

How to go through the Case Studies

- Choose a dataset to work with (data descriptions are available on the course website)
- Copy the files related to the chosen dataset and case study from the course website.
- Study the .mod files with the help of the descriptions
- Run the .mod files with BIOGEME
- Interpret the results and compare your interpretation with the one we have proposed
- Develop other model specifications

Course website

- http://transp-or.epfl.ch/ \rightarrow Teaching \rightarrow Mathematical modeling of behavior \rightarrow Laboratories
- BIOGEME software (including documentation and utilities)
- For each Case Study
 - Data files for available datasets
 - Model specification files
 - Possible interpretation of results

Today's plan

- 1. Independent work on 2-3 Case Studies
 - choose case
 - estimate
 - interpret
- 2. Group work
 - gather in groups
 - generate .mod file (base)
 - test an idea / hypothesis

Specifying models: Recommended steps

- Formulate a-priori hypothesis:
 - Expectations and intuition regarding the explanatory variables that appear to be significant for mode choice.
- Specify a minimal model:
 - Start simple;
 - Include the main factors affecting the mode choice of (rational) travelers;
 - This will be your starting point.
- Continue adding and testing variables that improve the initial model in terms of *causality*, and *efficiency* with respect to what actually happened in the sample.

Evaluating models

The main indicators used to evaluate and compare the various models are summarised here:

- Informal tests:
 - signs and relative magnitudes of the parameters β values (under our a-priori expectations);
 - *trade-offs* among some attributes and ratios of pairs of parameters (e.g. reasonable value of time).
- Overall goodness of fit measure:
 - adjusted rho-square (likelihood ratio index): takes into account the different number of explanatory variables used in the models and normalizes for their effect → suitable to compare models with different number of independent variables. We check this value to have a first idea about which model might be better (among models of the same type), but it is not a statistical test.

Evaluating models (cont.)

- Statistical tests:
 - *t-test values*: statistically significant explanatory variables are denoted by t-statistic values remarkably higher/ lower than ± 2 (for a 95% level of confidence);
 - *final log-likelihood* for the full set of parameters: should be remarkably different from the ones in the naive approach (null log-likelihood and log-likelihood at constants); we ask for high values of likelihood ratio test $[-2(LL(0) LL(\beta))]$ in order to have a model significantly different than the naive one.
- Test of entire models:
 - *likelihood ratio test* $[-2(LL(\hat{\beta}_R) LL(\hat{\beta}_U))]$: used to test the null hypothesis that two models are equivalent, under the requirement that the one is the restricted version of the other. The likelihood ratio test is X^2 distributed, with degrees of freedom equal to $K_U K_R$ (where *K* the number of parameters of the unrestricted and restricted model, respectively).

