Logit with multiple alternatives

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Logit Model

For all $i \in \mathcal{C}_n$,

$$U_{in} = V_{in} + \varepsilon_{in}$$

- What is C_n ?
- What is ε_{in} ?
- What is V_{in} ?

Choice set

Universal choice set

- All potential alternatives for the population
- Restricted to relevant alternatives

Mode choice:

driving alone	sharing a ride	taxi
motorcycle	bicycle	walking
transit bus	rail rapid transit	horse

Choice set

Individual's choice set

- No driver license
- No auto available
- Awareness of transit services
- Transit services unreachable
- Walking not an option for long distance

Choice set

Individual's choice set Choice set generation is tricky

- How to model "awareness"?
- What does "long distance" exactly mean?
- What does "unreachable" exactly mean?

We assume here deterministic rules

Main assumption: ε_{in} are

- extreme value EV(0,μ),
- independent and
- identically distributed.

Comments:

- Independence: across *i* and *n*.
- Identical distribution: same scale parameter μ across i and n.

Reminder: binary case

- $C_n = \{i, j\}$
- $U_{in} = V_{in} + \varepsilon_{in}$
- $\varepsilon_{in} \sim \mathsf{EV}(0,\mu)$
- Probability

$$P(i|\mathcal{C}_n = \{i, j\}) = \frac{e^{\mu V_{in}}}{e^{\mu V_{in}} + e^{\mu V_{jn}}}$$

- $\bullet \ \mathcal{C}_n = \{1, \dots, J_n\}$
- $U_{in} = V_{in} + \varepsilon_{in}$
- $\varepsilon_{in} \sim \mathsf{EV}(0,\mu)$
- ε_{in} i.i.d.
- Probability

$$P(i|\mathcal{C}_n) = P(V_{in} + \varepsilon_{in} \ge \max_{j=1,...,J_n} V_{jn} + \varepsilon_{jn})$$

• Assume without loss of generality (wlog) that i=1

$$P(1|\mathcal{C}_n) = P(V_{1n} + \varepsilon_{1n} \ge \max_{j=2,...,J_n} V_{jn} + \varepsilon_{jn})$$

- Define a composite alternative: "anything but one"
- Associated utility:

$$U^* = \max_{j=2,\dots,J_n} (V_{jn} + \varepsilon_{jn})$$

From a property of the EV distribution

$$U^* \sim \mathsf{EV}\left(\frac{1}{\mu} \ln \sum_{j=2}^{J_n} e^{\mu V_{jn}}, \mu\right)$$

From another property of the EV distribution

$$U^* = V^* + \varepsilon^*$$

where

$$V^* = \frac{1}{\mu} \ln \sum_{j=2}^{J_n} e^{\mu V_{jn}}$$

and

$$\varepsilon^* \sim \mathsf{EV}(0,\mu)$$

Therefore

$$P(1|C_n) = P(V_{1n} + \varepsilon_{1n} \ge \max_{j=2,...,J_n} V_{jn} + \varepsilon_{jn})$$

= $P(V_{1n} + \varepsilon_{1n} \ge V^* + \varepsilon^*)$

This is a binary choice model

$$P(1|\mathcal{C}_n) = \frac{e^{\mu V_{1n}}}{e^{\mu V_{1n}} + e^{\mu V^*}}$$

where

$$V^* = \frac{1}{\mu} \ln \sum_{j=2}^{J_n} e^{\mu V_{jn}}$$

• We have
$$e^{\mu V^*} = e^{\ln \sum_{j=2}^{J_n} e^{\mu V_{jn}}} = \sum_{j=2}^{J_n} e^{\mu V_{jn}}$$

and

$$P(1|C_n) = \frac{e^{\mu V_{1n}}}{e^{\mu V_{1n}} + e^{\mu V^*}}$$

$$= \frac{e^{\mu V_{1n}}}{e^{\mu V_{1n}} + \sum_{j=2}^{J_n} e^{\mu V_{jn}}}$$

$$= \frac{e^{\mu V_{1n}}}{\sum_{j=1}^{J_n} e^{\mu V_{jn}}}$$

- The scale parameter μ is not identifiable: $\mu = 1$.
- Warning: not identifiable ≠ not existing
- $\mu \to 0$, that is variance goes to infinity

$$\lim_{\mu \to 0} P(i|C_n) = \frac{1}{J_n} \quad \forall i \in \mathcal{C}_n$$

• $\mu \to +\infty$, that is variance goes to zero

$$\lim_{\mu \to \infty} P(i|C_n) = \lim_{\mu \to \infty} \frac{1}{1 + \sum_{j \neq i} e^{\mu(V_{jn} - V_{in})}}$$

$$= \begin{cases} 1 & \text{if } V_{in} > \max_{j \neq i} V_{jn} \\ 0 & \text{if } V_{in} < \max_{j \neq i} V_{jn} \end{cases}$$

- $\mu \to +\infty$, that is variance goes to zero (ctd.)
- What if there are ties?
- $V_{in} = \max_{j \in \mathcal{C}_n} V_{jn}, i = 1, \dots, J_n^*$
- Then

$$P(i|\mathcal{C}_n) = \frac{1}{J_n^*} \quad i = 1, \dots, J_n^*$$

and

$$P(i|\mathcal{C}_n) = 0 \quad i = J_n^* + 1, \dots, J_n$$

Systematic part of the utility function

$$V_{in} = V(z_{in}, S_n)$$

where

- z_{in} is a vector of attributes of alternative i for individual n
- S_n is a vector of socio-economic characteristics of n

Outline:

- Functional form: linear utility
- Explanatory variables: What is exactly contained in z_{in} and S_n ?
- Functional form: capturing nonlinearities
- Interactions

Functional form: linear utility

Notation:

$$x_{in} = (z_{in}, S_n)$$

In general, linear-in-parameters utility functions are used

$$V_{in} = V(z_{in}, S_n) = V(x_{in}) = \sum_{p} \beta_p(x_{in})_p$$

Not as restrictive as it may seem

Explanatory variables: alternatives attributes

- Numerical and continuous
- $(z_{in})_p \in \mathbb{R}$, $\forall i, n, p$
- Associated with a specific unit

Examples:

- Auto in-vehicle time (in min.)
- Transit in-vehicle time (in min.)
- Auto out-of-pocket cost (in cents)
- Transit fare (in cents)
- Walking time to the bus stop (in min.)

Straightforward modeling

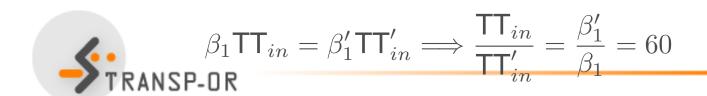
Explanatory variables: alternatives attributes

- \bullet V_{in} is unitless
- Therefore, β depends on the unit of the associated attribute
- Example: consider two specifications

$$V_{in} = \beta_1 \mathsf{TT}_{in} + \cdots$$

 $V_{in} = \beta'_1 \mathsf{TT}'_{in} + \cdots$

- If TT_{in} is a number of minutes, the unit of β_1 is 1/min
- If TT'_{in} is a number of hours, the unit of β'_1 is 1/hour
- Both models are equivalent, but the estimated value of the coefficient will be different



Explanatory variables: alternatives attributes

Generic and alternative specific parameters

$$V_{
m auto} = eta_1 {
m TT}_{
m auto}$$
 $V_{
m bus} = eta_1 {
m TT}_{
m bus}$

or

$$V_{\text{auto}} = \beta_1 \text{TT}_{\text{auto}}$$

 $V_{\text{bus}} = \beta_2 \text{TT}_{\text{bus}}$

Modeling assumption: a minute has/has not the same marginal utility whether it is incurred on the auto or bus mode

Explanatory variables: socio-eco. characteristics

- Numerical and continuous
- $(S_n)_p \in \mathbb{R}, \forall n, p$
- Associated with a specific unit

Examples:

- Annual income (in KCHF)
- Age (in years)

Warning: S_n do not depend on i

Explanatory variables: socio-eco. characteristics

They cannot appear in all utility functions

$$V_1 = \beta_1 x_{11} + \beta_2 \text{income}$$
 $V_2 = \beta_1 x_{21} + \beta_2 \text{income}$
 $V_3 = \beta_1 x_{31} + \beta_2 \text{income}$
 $V_4 = \beta_1 x_{21} + \beta_2 \text{income}$
 $V_5 = \beta_1 x_{31} + \beta_2 \text{income}$

In general: alternative specific characteristics

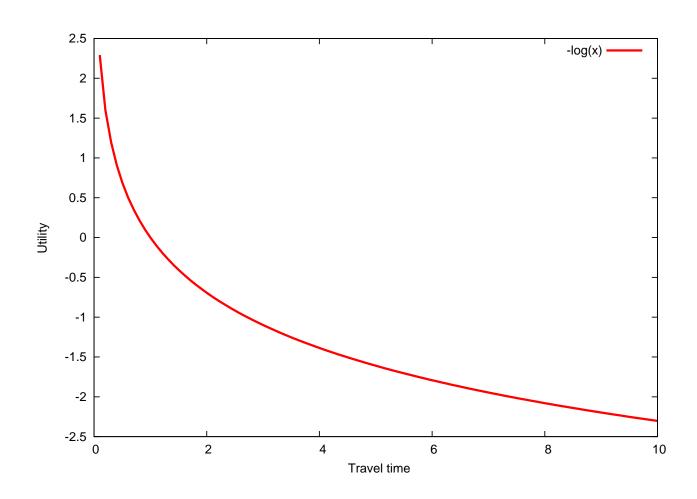
$$V_1 = \beta_1 x_{11} + \beta_2 \text{income} + \beta_4 \text{age}$$

 $V_2 = \beta_1 x_{21} + \beta_3 \text{income} + \beta_5 \text{age}$
 $V_3 = \beta_1 x_{31}$

Functional form: dealing with nonlinearities

- Nonlinear transformations of the independent variables
- Discrete and qualitative variables
- Continuous variables
 - Categories
 - Splines
 - Box-Cox
 - Power series

- Compare a trip of 5 min with a trip of 10 min
- Compare a trip of 120 min with a trip of 125 min



Instead of

$$V_i = \beta \mathsf{time}_i$$

one can use

$$V_i = \beta \ln(\mathsf{time}_i)$$

It is still a linear-in-parameters form

Another example: disposable income

 $\max(\mathsf{household} \ \mathsf{income}(\$/\mathsf{year}) - s \times \mathsf{nbr} \ \mathsf{of} \ \mathsf{persons}, 0)$

where s is the subsistence budget per person

Data can be preprocessed to account for nonlinearities

$$V_{in} = V(h(z_{in}, S_n)) = \sum_{k} \beta_k(h(z_{in}, S_n))_k$$

is linear-in-parameter, even with h nonlinear.

- Mainly used to capture qualitative attributes
 - Level of comfort for the train
 - Reliability of the bus
 - Color
 - Shape
 - etc...
- or characteristics
 - Sex
 - Education
 - Professional status
 - etc.

Procedure for model specification:

- Identify all possible levels of the attribute: Very comfortable, Comfortable, Rather comfortable, Not comfortable.
- Select a base case: very comfortable
- Define numerical attributes
- Adopt a coding convention

Numerical attributes Introduce a 0/1 attribute for all levels except the base case

- z_c for comfortable
- z_{rc} for rather comfortable
- z_{nc} for not comfortable

Coding convention

	z_{c}	$z_{\sf rc}$	$z_{\sf nc}$
very comfortable	0	0	0
comfortable	1	0	0
rather comfortable	0	1	0
not comfortable	0	0	1

If a qualitative attribute has n levels, we introduce n-1 variables (0/1) in the model

Comparing two ways of coding:

$$V_{in} = \cdots + \beta_{\text{Vc}} z_{i\text{Vc}} + \beta_{\text{c}} z_{i\text{c}} + \beta_{\text{rc}} z_{i\text{rc}} + \beta_{\text{nc}} z_{i\text{nc}} \quad \beta_{\text{Vc}} = 0$$

$$V'_{in} = \cdots + \beta'_{\text{Vc}} z_{i\text{Vc}} + \beta'_{\text{c}} z_{i\text{c}} + \beta'_{\text{rc}} z_{i\text{rc}} + \beta'_{\text{nc}} z_{i\text{nc}} \quad \beta'_{\text{c}} = 0$$

Linear-in-parameter specification

Let's add a constant to all β 's

$$V_{in} = \cdots + \beta_{\text{vc}} z_{i\text{vc}} + \beta_{\text{c}} z_{i\text{c}} + \beta_{\text{rc}} z_{i\text{rc}} + \beta_{\text{nc}} z_{i\text{nc}} \quad \beta_{\text{vc}} = 0$$

$$V'_{in} = \cdots + \beta'_{\text{vc}} z_{i\text{vc}} + \beta'_{\text{c}} z_{i\text{c}} + \beta'_{\text{rc}} z_{i\text{rc}} + \beta'_{\text{nc}} z_{i\text{nc}} \quad \beta'_{\text{c}} = 0$$

$$V_{in} = \cdots + (\beta_{\text{vc}} + K)z_{i\text{vc}} + (\beta_{\text{c}} + K)z_{i\text{c}} + (\beta_{\text{rc}} + K)z_{i\text{rc}} + (\beta_{\text{nc}} + K)z_{i\text{nc}}$$

$$= \cdots + \beta_{\text{vc}}z_{i\text{vc}} + \beta_{\text{c}}z_{i\text{c}} + \beta_{\text{rc}}z_{i\text{rc}} + \beta_{\text{nc}}z_{i\text{nc}} + K(z_{i\text{vc}} + z_{i\text{c}} + z_{i\text{rc}} + z_{i\text{nc}})$$

$$= \cdots + \beta_{\text{vc}}z_{i\text{vc}} + \beta_{\text{c}}z_{i\text{c}} + \beta_{\text{rc}}z_{i\text{rc}} + \beta_{\text{nc}}z_{i\text{nc}} + K$$

- $K = -\beta_{vc}$: very comfortable as the base case
- $K = -\beta_c$: comfortable as the base case
- $K = -\beta_{rc}$: rather comfortable as the base case
- $K = -\beta_{nc}$: not comfortable as the base case

Example of estimation with Biogeme:

	Model 1	Model 2
ASC	0.574	0.574
BETA_VC	0.000	0.918
BETA_C	-0.919	0.000
BETA_RC	-1.015	-0.096
BETA_NC	-2.128	-1.210

Continuous variables: categories

- Assumption: sensitivity to travel time varies with travel time
- Using β TT is not appropriate anymore
- Categories are defined: travel time in minutes

- Solutions:
 - Categories with constants (inferior solution)
 - Piecewise linear specification (spline)

Continuous variables: categories

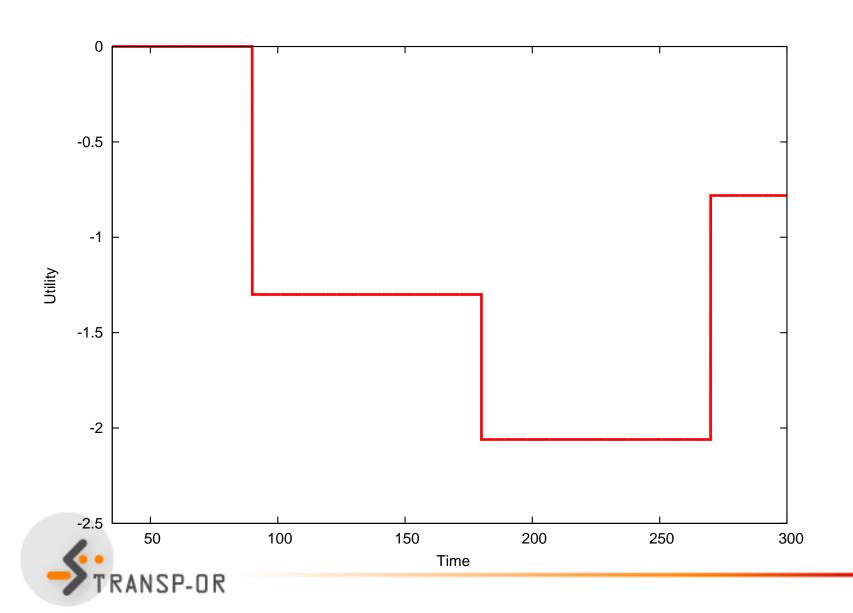
Categories with constants

Same specification as for discrete variables

$$V_i = \beta_{T1}x_{T1} + \beta_{T2}x_{T2} + \beta_{T3}x_{T3} + \beta_{T4}x_{T4} + \dots$$

- with
 - $x_{T1} = 1$ if $TT_i \in [0-90[, 0]$ otherwise
 - $x_{T2} = 1$ if $TT_i \in [90-180[, 0 \text{ otherwise}]$
 - $x_{T3} = 1$ if $TT_i \in [180-270[, 0 \text{ otherwise}]$
 - $x_{T4} = 1$ if $TT_i \in [270-[, 0 \text{ otherwise}]$
- One β must be normalized to 0.

Continuous variables: categories



Continuous variables: categories

Drawbacks

- No sensitivity to travel time within the intervals
- Discontinuous utility function (jumps)
- Need for many small intervals
- Results may vary significantly with the definition of the intervals

Appropriate when

- Categories have been used in the survey (income, age)
- Definition of categories is natural (weekday)

Continuous variables: categories

Piecewise linear specification (spline)

- Capture the sensitivity within the intervals
- Enforce continuity of the utility function

Specification:

$$V_i = \beta_{T1} x_{T1} + \beta_{T2} x_{T2} + \beta_{T3} x_{T3} + \beta_{T4} x_{T4} + \dots$$

where

$$x_{T1} = \begin{cases} t & \text{if } t < 90 \\ 90 & \text{otherwise} \end{cases} \qquad x_{T2} = \begin{cases} 0 & \text{if } t < 90 \\ t - 90 & \text{if } 90 \le t < 180 \\ 90 & \text{otherwise} \end{cases}$$

$$x_{T3} = \begin{cases} 0 & \text{if } t < 180 \\ t - 180 & \text{if } 180 \le t < 270 \\ 90 & \text{otherwise} \end{cases} \qquad x_{T4} = \begin{cases} 0 & \text{if } t < 270 \\ t - 270 & \text{otherwise} \end{cases}$$

Note: coding in Biogeme for interval [a:a+b[

$$x_{Ti} = \begin{cases} 0 & \text{if } t < a \\ t - a & \text{if } a \le t < a + b \\ b & \text{otherwise} \end{cases} \quad x_{Ti} = \max(0, \min(t - a, b))$$

```
x_{T1} = \min(t, 90)
x_{T2} = \max(0, \min(t - 90, 90))
x_{T3} = \max(0, \min(t - 180, 90))
x_{T4} = \max(0, t - 270)

TRAIN_TT1 = \min( TRAIN_TT , 90)

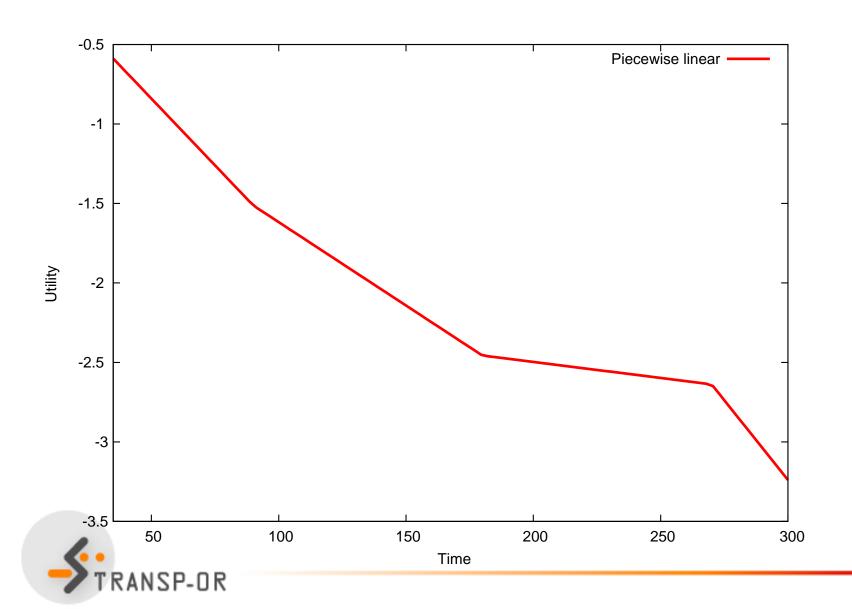
TRAIN_TT2 = \max(0, \min( TRAIN_TT - 90, 90))

TRAIN_TT3 = \max(0, \min( TRAIN_TT - 180 , 90))

TRAIN_TT4 = \max(0, TRAIN_TT - 270)
```


Examples:

t	TT1	TT2	TT3	TT4
40	40	0	0	0
100	90	10	0	0
200	90	90	20	0
300	90	90	90	30



Box and Cox, J. of the Royal Statistical Society (1964)

$$V_i = \beta x_i(\lambda) + \cdots$$

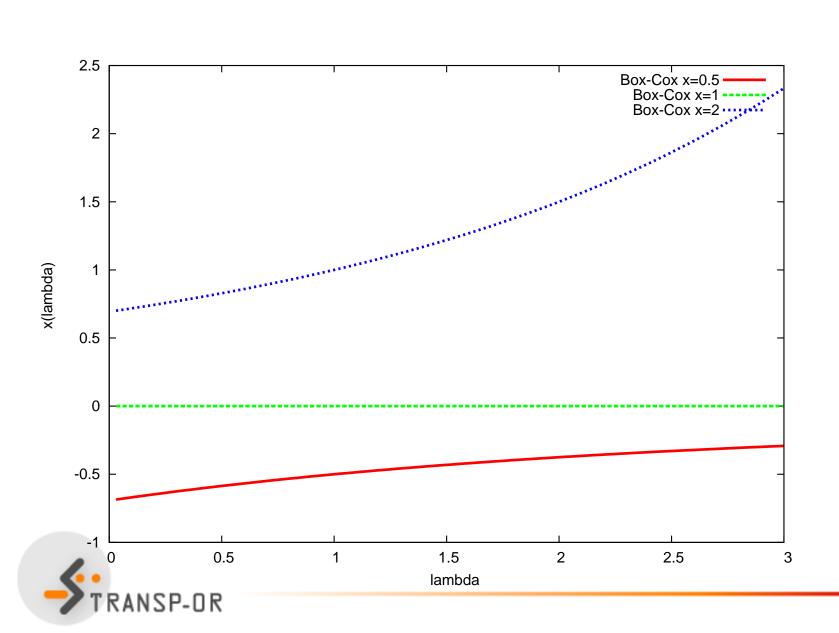
where

$$x_i(\lambda) = \begin{cases} \frac{x_i^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \ln x_i & \text{if } \lambda = 0. \end{cases}$$

where $x_i > 0$.

If $x_i \leq 0$, let α such that $x_i + \alpha > 0$ and

$$x_i(\lambda, \alpha) = \begin{cases} \frac{(x_i + \alpha)^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \\ \ln(x_i + \alpha) & \text{if } \lambda = 0. \end{cases}$$



Other power transforms are possible:

• Manly, Biometrics (1971)

$$x_i(\lambda) = \begin{cases} \frac{e^{x_i \lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \\ x_i & \text{if } \lambda = 0. \end{cases}$$

John and Draper, Applied Statistics (1980)

$$x_i(\lambda) = \begin{cases} \operatorname{sign}(x_i) \frac{(|x_i|+1)^{\lambda}-1}{\lambda} & \text{if } \lambda \neq 0\\ \operatorname{sign}(x_i) \ln(|x_i|+1) & \text{if } \lambda = 0. \end{cases}$$

Other power transforms are possible:

Yeo and Johnson, Biometrika (2000)

$$x_i(\lambda) = \begin{cases} \frac{(x_i + 1)^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0, x_i \geq 0; \\ \ln(x_i + 1) & \text{if } \lambda = 0, x_i \geq 0; \\ \frac{(1 - x_i)^{2 - \lambda} - 1}{\lambda - 2} & \text{if } \lambda \neq 2, x_i < 0; \\ -\ln(1 - x_i) & \text{if } \lambda = 2, x_i < 0. \end{cases}$$

Power series

$$V_i = \beta_1 T + \beta_2 T^2 + \beta_3 T^3 + \dots$$

- In practice, these terms can be very correlated
- Difficult to interpret
- Risk of over fitting

Interactions

- All individuals in a population are not alike
- Socio-economic characteristics define segments in the population
- How to capture heterogeneity?
 - Interactions of attributes and characteristics
 - Discrete segmentation
 - Continuous segmentation

Interactions of attributes and characteristics

Combination of attributes:

- cost / income
- fare / disposable income
- out-of-vehicle time / distance

WARNING: correlation of attributes may produce degeneracy in the model

Example: speed and travel time if distance is constant

Interactions: discrete segmentation

- The population is divided into a finite number of segments
- Each individual belongs to exactly one segment
- Example: gender (M,F) and house location (metro, suburb, perimeter areas)
- 6 segments

$$\beta_{M,m}TT_{M,m} + \beta_{M,s}TT_{M,s} + \beta_{M,p}TT_{M,p} + \beta_{F,m}TT_{F,m} + \beta_{F,s}TT_{F,s} + \beta_{F,p}TT_{F,p} +$$

• $TT_i = TT$ if indiv. belongs to segment i, and 0 otherwise

Interactions: continuous segmentation

- Taste parameter varies with a continuous socio-economic characteristics
- Example: the cost parameter varies with income

$$eta_{
m cost} = \hat{eta}_{
m cost} \left(rac{
m inc}{
m inc}_{
m ref}
ight)^{\lambda} \ \, {
m with} \, \, \lambda = rac{\partial eta_{
m cost}}{\partial {
m inc}} rac{
m inc}{eta_{
m cost}}$$

- Warning: λ must be estimated and utility is not linear-in-parameters anymore
- Reference value is arbitrary
- Several characteristics can be combined:

$$eta_{
m cost} = \hat{eta}_{
m cost} \left(rac{
m inc}{
m inc}_{
m ref}
ight)^{\lambda_1} \left(rac{
m age}{
m age}_{
m ref}
ight)^{\lambda_2}$$

Heteroscedasticity

- Logit is homoscedastic
- ε_{in} i.i.d. across both i and n.
- Assume there are two different groups such that

$$U_{in_1} = V_{in_1} + \varepsilon_{in_1}$$

$$U_{in_2} = V_{in_2} + \varepsilon_{in_2}$$

and $Var(\varepsilon_{in_2}) = \alpha^2 Var(\varepsilon_{in_1})$

• Then we prefer the model

$$\alpha U_{in_1} = \alpha V_{in_1} + \alpha \varepsilon_{in_1} = \alpha V_{in_1} + \varepsilon'_{in_1}$$

$$U_{in_2} = V_{in_2} + \varepsilon_{in_2} = V_{in_2} + \varepsilon'_{in_2}$$

• where ε'_{in_1} and ε'_{in_2} are i.i.d.

Heteroscedasticity

• If V_{in_1} is linear-in-parameters, that is

$$V_{in_1} = \sum_{j} \beta_j x_{jin_1}$$

then

$$\alpha V_{in_1} = \sum_{j} \alpha \beta_j x_{jin_1}$$

is nonlinear.

- Choice of residential telephone services
- Household survey conducted in Pennsylvania, USA, 1984
- Revealed preferences
- 434 observations

Telephone services and availability

	metro, suburban				
	& some				
	perimeter	perimeter	non-metro		
	areas	areas	areas		
Budget Measured	yes	yes	yes		
Standard Measured	yes	yes	yes		
Local Flat	yes	yes	yes		
Extended Area Flat	no	yes	no		
Metro Area Flat	yes	yes	no		

Universal choice set

$$\mathcal{C} = \{\mathsf{BM}, \mathsf{SM}, \mathsf{LF}, \mathsf{EF}, \mathsf{MF}\}$$

Specific choice sets

- Metro, suburban & some perimeter areas: {BM,SM,LF,MF}
- Other perimeter areas: C
- Non-metro areas: {BM,SM,LF}

Specification table

	β_1	β_2	β_3	eta_4	eta_5
BM	0	0	0	0	ln(cost(BM))
SM	1	0	0	0	$\ln(\cos t(SM))$
LF	0	1	0	0	$\ln(\text{cost}(LF))$
EF	0	0	1	0	$\ln(cost(EF))$
MF	0	0	0	1	$\ln(\text{cost}(MF))$

$$V_{ extsf{BM}} = eta_5 \ln(extsf{cost}_{ extsf{BM}})$$
 $V_{ extsf{SM}} = eta_1 + eta_5 \ln(extsf{cost}_{ extsf{SM}})$
 $V_{ extsf{LF}} = eta_2 + eta_5 \ln(extsf{cost}_{ extsf{LF}})$
 $V_{ extsf{EF}} = eta_3 + eta_5 \ln(extsf{cost}_{ extsf{EF}})$
 $V_{ extsf{MF}} = eta_4 + eta_5 \ln(extsf{cost}_{ extsf{MF}})$

Specification table II

	β_1	β_2	β_3	β_4	eta_5	eta_6	eta_7
BM	0	0	0	0	$\ln(\text{cost}(BM))$	users	0
SM	1	0	0	0	$\ln(\cos t(SM))$	users	0
LF	0	1	0	0	$\ln(\text{cost}(LF))$	0	1 if metro/suburb
EF	0	0	1	0	$\ln(cost(EF))$	0	0
MF	0	0	0	1	$\ln(\text{cost}(MF))$	0	0

$$V_{
m BM} = eta_5 \ln({
m cost}_{
m BM}) + eta_6 {
m users}$$
 $V_{
m SM} = eta_1 + eta_5 \ln({
m cost}_{
m SM}) + eta_6 {
m users}$
 $V_{
m LF} = eta_2 + eta_5 \ln({
m cost}_{
m LF}) + eta_7 {
m MS}$
 $V_{
m EF} = eta_3 + eta_5 \ln({
m cost}_{
m EF})$
 $V_{
m MF} = eta_4 + eta_5 \ln({
m cost}_{
m MF})$

Logit Model:

$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$

Log-likelihood of a sample:

$$\mathcal{L}(\beta_1, \dots, \beta_K) = \sum_{n=1}^{N} \left(\sum_{j=1}^{J} y_{jn} \ln P_n(j|\mathcal{C}_n) \right)$$

where $y_{jn} = 1$ if ind. n has chosen alt. j, 0 otherwise

$$\ln P_n(i|\mathcal{C}_n) = \ln \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$
$$= V_{in} - \ln(\sum_{j \in \mathcal{C}_n} e^{V_{jn}})$$

Log-likelihood of a sample:

$$\mathcal{L}(\beta_1, \dots, \beta_K) = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \left(V_{in} - \ln \sum_{j \in \mathcal{C}_n} e^{V_{jn}} \right)$$

The maximum likelihood estimation problem:

$$\max_{\beta \in \mathbb{R}^K} \mathcal{L}(\beta)$$

Maximization of a concave function with ${\cal K}$ variables Nonlinear programming

Numerical issue:

$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$

Largest value that can be stored in a computer $\approx 10^{308}$, that is

$$e^{709.783}$$

It is equivalent to compute

$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in} - V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} - V_{in}}} = \frac{1}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} - V_{in}}}$$

Null model

$$U_i = \varepsilon_i \quad \forall i$$

$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}} = \frac{e^0}{\sum_{j \in \mathcal{C}_n} e^0} = \frac{1}{\#\mathcal{C}_n}$$

$$\mathcal{L} = \sum_{n} \ln \frac{1}{\#\mathcal{C}_n} = -\sum_{n} \ln(\#\mathcal{C}_n)$$

Constants only [Assume $C_n = C$, $\forall n$]

$$U_i = c_i + \varepsilon_i \quad \forall i$$

In the sample of size n, there are n_i persons choosing alt. i.

$$\ln P(i) = c_i - \ln(\sum_j e^{c_j})$$

If C_n is the same for all people choosing i, the log-likelihood for this part of the sample is

$$\mathcal{L}_i = n_i c_i - n_i \ln(\sum_i e^{c_j})$$

Constants only
The total log-likelihood is

$$\mathcal{L} = \sum_{j} n_{j} c_{j} - n \ln(\sum_{j} e^{c_{j}})$$

At the maximum, the derivatives must be zero

$$\frac{\partial \mathcal{L}}{\partial c_1} = n_1 - n \frac{e^{c_1}}{\sum_j e^{c_j}} = n_1 - nP(1) = 0.$$

Constants only Therefore,

$$P(1) = \frac{n_1}{n}$$

If all alternatives are always available, a model with only Alternative Specific Constants reproduces exactly the market shares in the sample

Back to the case study

Alt.	n_i	n_i/n	c_i	e^{c_i}	P(i)
BM	73	0.168	0.247	1.281	0.168
SM	123	0.283	0.769	2.158	0.283
LF	178	0.410	1.139	3.123	0.410
EF	3	0.007	-2.944	0.053	0.007
MF	57	0.131	0.000	1.000	0.131
	434	1.000			

Null-model: $\mathcal{L} = -434 \ln(5) = -698.496$

Warning: these results have been obtained assuming that all alternatives are always available

