Review of statistics

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Probability distributions

A probability density function on a set S of outcomes must

- be non negative for all outcomes in S,
- sum up or integrate to 1.

Example:

$$f(x) = \frac{x}{4} + \frac{7x^3}{2}$$
, with $0 \le x \le 1$,

is a PDF.

Is it useful in practice?

Probability distributions

A PDF should model probabilistic behavior of real-world phenomena.

- Normal distribution
- Poisson distribution
- Gamma distributions
- Extreme Value distributions

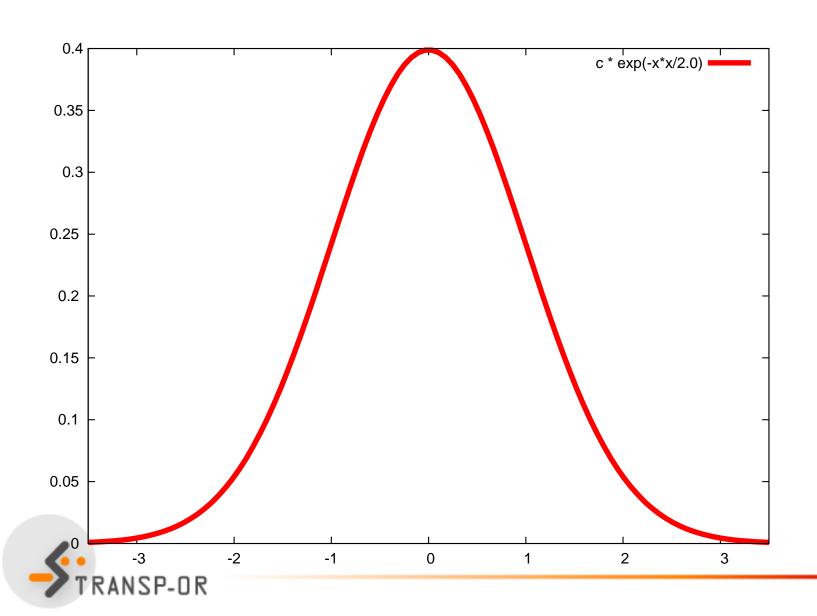
• . . .

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, \quad x \in \mathbb{R}.$$

Motivation: Central Limit Theorem

- $X_1, X_2, ...$ infinite sequence of i.i.d random variables, with finite mean μ and finite variance σ^2 .
- ullet For any number a and b

$$\lim_{n \to \infty} P\left(a \le \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \le b\right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$$



Cumulative Distribution Function (CDF)

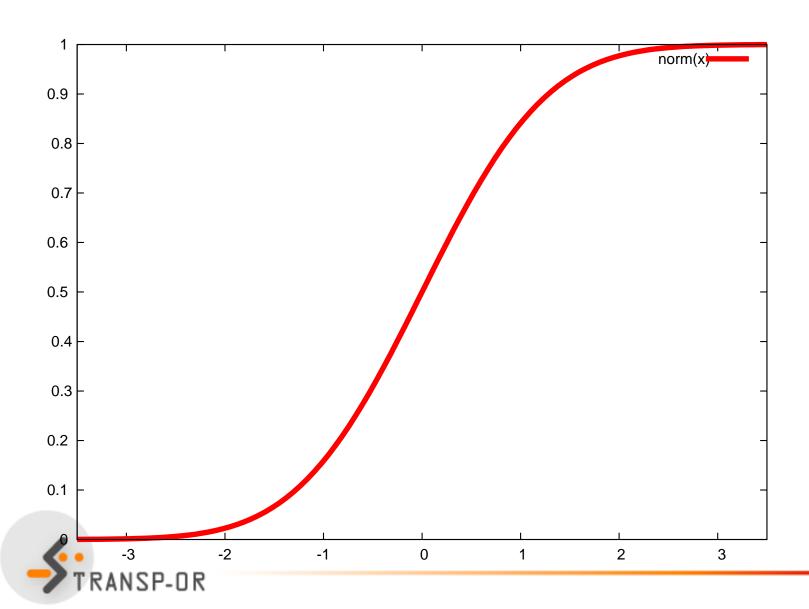
$$P(X \le a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$$

No closed form formula

Notation:

$$X \sim N(0,1)$$

- $f_X(x)$ is the PDF
- $F_X(x)$ is the CDF



$$X \sim N(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, \quad x \in \mathbb{R}.$$

$$Y \sim N(0, 1)$$

$$Y = \frac{X - \mu}{\sigma}$$

- Linear combinations of normal r.v.:
 - X_i , i = 1, ..., n
 - $X_i \sim N(\mu_i, \sigma_i^2)$
 - X_i independent
 - Then, if $\alpha_i \in \mathbb{R}$, $i = 1, \ldots, n$

$$\sum_{i=1}^{n} \alpha_i X_i \sim N\left(\sum_{i=1}^{n} \alpha_i \mu_i, \sum_{i=1}^{n} \alpha_i^2 \sigma_i^2\right)$$

- Linear transformation of a normal r.v.
 - $X \sim N(\mu, \sigma^2)$
 - $\alpha, \beta \in \mathbb{R}$
 - Then,

$$\alpha + \beta X \sim N\left(\alpha + \beta \mu, \beta^2 \sigma^2\right)$$

Parameter estimation

Parameter	Estimator	Method/properties
μ	\bar{x}	Unbiased, maximum likelihood
σ^2	$\frac{n}{n-1}s^2$	Unbiased
σ^2	s^2	Maximum likelihood

- X_1, \ldots, X_n i.i.d.
- $f_{X_i}(x) = f(x)$, $F_{X_i}(x) = F(x)$, i = 1, ..., n
- $\bullet \ X_n' = \max(X_1, \dots, X_n)$
- Applications:
 - rainfall
 - floods
 - earthquakes
 - air pollution
 - ...

Emil Julius Gumbel

1891-1966

- father of extreme value theory
- politically involved left-wing pacifist in Germany,
- strongly against right wing's campaign of organized assassination (1919)
- first German professor to be expelled from university under the pressure of the Nazis
- in 1932 he left Heidelberg to Paris, where he met Borel and Fréchet.
- in 1940, he had to escape to New-York, where he continued his fight against Nazism by helping the US secret service.

- $\bullet \ X_n' = \max(X_1, \dots, X_n)$
- $F_{X'_n} = F(x)^n$. Indeed

$$P(X_n' \le x) = P(X_1 \le x)P(X_2 \le x)\dots P(X_n \le x)$$

• Warning: if $n \to \infty$

$$\lim_{n \to \infty} F_{X'_n}(x) = \begin{cases} 1 & \text{if } F(x) = 1\\ 0 & \text{if } F(x) < 1 \end{cases}$$

Degenerate distribution

- We want a limiting distribution which is non degenerate
- Limiting distribution of some sequence of transformed "reduced" values
- For instance $a_n X'_n + b_n$
- a_n , b_n do not depend on x
- CDF of limiting distribution: G(x)
- Let's identify desired properties

$$X_1$$
 ... X_n $\max(X_1, ..., X_n)$
 X_{n+1} ... X_{2n} $\max(X_{n+1}, ..., X_{2n})$
 \vdots \vdots \vdots $X_{(i-1)n+1}$... X_{in} $\max(X_{(i-1)n+1}, ..., X_{in})$
 \vdots \vdots \vdots \vdots $X_{(N-1)n+1}$... X_{Nn} $\max(X_{(N-1)n+1}, ..., X_{Nn})$

Two ways of seeing $\max(X_1,\ldots,X_{Nn})$ when $n\to\infty$

- 1. As a max of many X_i , the CDF should look like $G(a_Nx + b_N)$
- 2. The CDF of the max of each row is G(x)
- 3. So the CDF of the max of all rows is $G(x)^N$.

Stability postulate (Fréchet, 1927):

$$G(x)^N = G(a_N x + b_N)$$

We consider here the case $a_N = 1$ to obtain the so-called "type I extreme value distribution"

$$G(x)^N = G(x + b_N)$$

We have also

$$G(x)^{MN} = G(x + b_N)^M = G(x + b_N + b_M)$$

 $G(x)^{MN} = G(x + b_{MN})$

Therefore

$$G(x + b_N + b_M) = G(x + b_{MN})$$

that is

$$b_N + b_M = b_{MN}$$

so that b_N must be of the form

$$b_N = -\sigma' \ln N,$$

and the stability postulate becomes

$$G(x)^N = G(x - \sigma' \ln N)$$

Let's take the logarithm twice

$$G(x)^N = G(x - \sigma' \ln N)$$

$$N \ln G(x) = \ln G(x - \sigma' \ln N)$$

Warning: G is a CDF, so $G(x) \leq 1$ and $\ln G(x) \leq 0$, $\forall x$

$$-N \ln G(x) = -\ln G(x - \sigma' \ln N)$$

$$\ln N + \ln(-\ln G(x)) = \ln(-\ln G(x - \sigma' \ln N))$$

Define $h(x) = \ln(-\ln G(x))$ to obtain

$$ln N + h(x) = h(x - \sigma' ln N)$$

h is affine.

$$\ln N + h(x) = h(x - \sigma' \ln N)$$

$$h(x) = \alpha x + \beta$$

$$h(0) = \beta$$

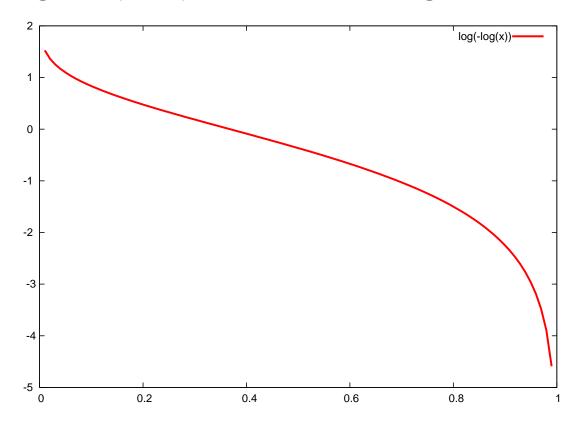
$$\ln N + \alpha x + \beta = \alpha(x - \sigma' \ln N) + \beta$$

$$\alpha = -\frac{1}{\sigma'}$$

Therefore

$$h(x) = h(0) - \frac{x}{\sigma'}$$

G is increasing in x (CDF), so h is decreasing in x

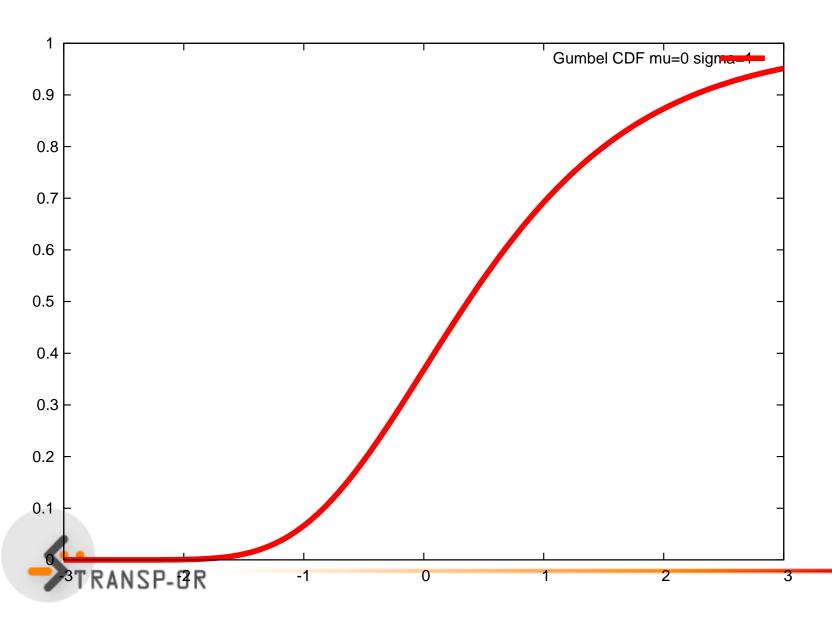


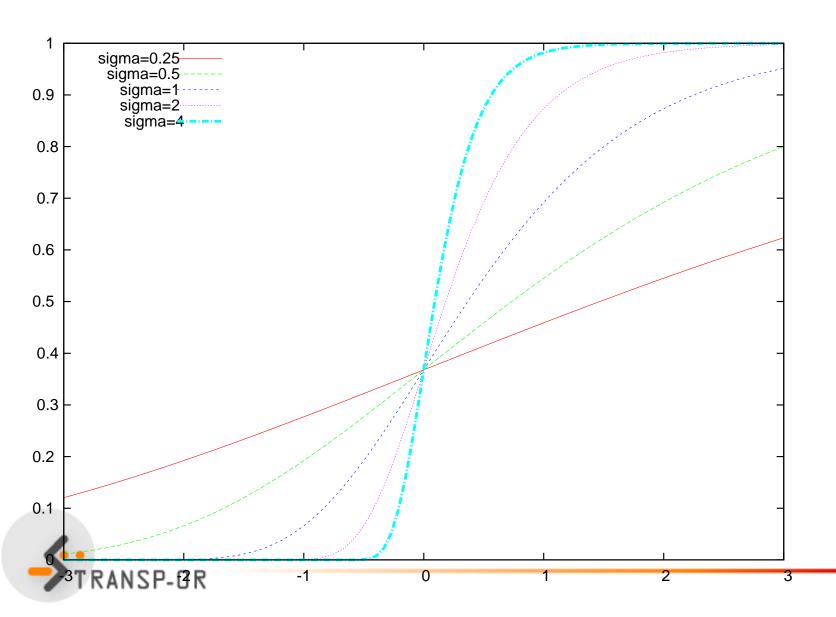
Therefore, $\sigma' > 0$

$$h(x) = \ln(-\ln G(x)) = h(0) - \frac{x}{\sigma'}$$

$$-\ln G(x) = \exp\left(h(0) - \frac{x}{\sigma'}\right) = \exp\left(-\frac{x - \sigma' h(0)}{\sigma'}\right)$$

$$G(x) = \exp\left(-\exp\left(-\frac{x - \sigma' h(0)}{\sigma'}\right)\right)$$
 Let $\sigma = 1/\sigma'$ and $\mu = \sigma' h(0) = \ln(-\ln G(0))/\sigma$
$$G(x) = \exp\left(-\exp\left(-\sigma(x - \mu)\right)\right)$$





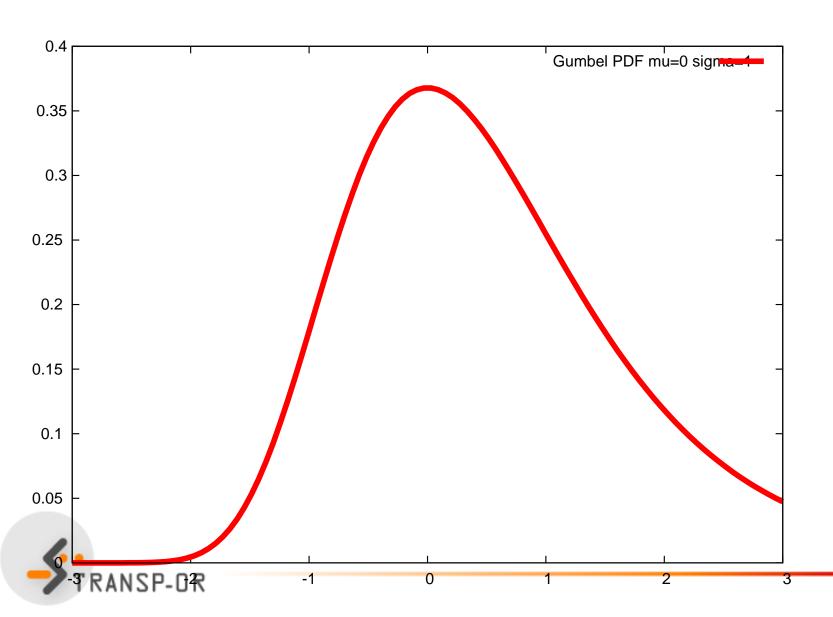
Type I Extreme Value Distribution or Gumbel Distribution

- $X \sim EV(\mu, \sigma)$
- Location parameter: μ
- Scale parameter: $\sigma > 0$
- CDF: closed form

$$F_X(x) = \exp\left(-e^{-\sigma(x-\mu)}\right)$$

PDF

$$f_X(x) = \sigma e^{-\sigma(x-\mu)} \exp\left(-e^{-\sigma(x-\mu)}\right)$$





Properties

Mode: μ

• Mean: $\mu + \gamma/\sigma$ where γ is Euler's constant

$$\gamma = -\int_0^{+\infty} e^{-x} \ln x dx = \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right) \approx 0.57721566$$

• Variance: $\pi^2/6\sigma^2$

Properties (ctd)

• Let $X \sim EV(\mu, \sigma)$, $\alpha > 0$ and $\beta \in \mathbb{R}$. Then

$$\alpha X + \beta \sim EV(\alpha \mu + \beta, \sigma/\alpha)$$

• Let $X_1 \sim EV(\mu_1, \sigma)$ and $X_2 \sim EV(\mu_2, \sigma)$

$$X = X_1 - X_2 \sim \mathsf{Logistic}(\mu_2 - \mu_1, \sigma)$$

that is

$$F_X(x) = \frac{1}{1 + \exp(-\sigma(x - (\mu_2 - \mu_1)))}$$

Properties (ctd)

• Let $X_1 \sim EV(\mu_1, \sigma)$ and $X_2 \sim EV(\mu_2, \sigma)$

$$X = \max(X_1, X_2) \sim EV\left(\frac{1}{\sigma}\ln(e^{\sigma\mu_1} + e^{\sigma\mu_2}), \sigma\right)$$

• Let $X_i \sim EV(\mu_i, \sigma)$, $i = 1, \ldots, n$

$$X = \max(X_1, \dots, X_n) \sim EV\left(\frac{1}{\sigma} \ln \sum_{i=1}^n e^{\sigma \mu_i}, \sigma\right)$$

The sum of two EV r.v. is not an EV r.v.

Estimation

- Families of models with parameters
- Estimation: approximate parameters from a random sample
- Estimator: random variable
- Classical methods: maximum likelihood, method of moments (least squares)

Estimation

Likelihood function

Let x_1, \ldots, x_n be a realization of a random sample X_1, \ldots, X_n from $f_X(x;\theta)$, where $\theta \in \mathbb{R}^p$ is a vector of unknown parameters. The function $L: \mathbb{R}^p \to [0,1]$

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta)$$

provides the likelihood of the sample as a function of θ .

Estimation

Maximum likelihood estimate

Let x_1, \ldots, x_n be a realization of a random sample X_1, \ldots, X_n from $f_X(x;\theta)$, where $\theta \in \mathbb{R}^p$ is a vector of unknown parameters. If $\hat{\theta}$ is such that

$$L(\hat{\theta}) \ge L(\theta)$$

for all possible values of θ , then $\hat{\theta}$ is called the maximum likelihood estimate for θ .

Note: it is computationally easier to maximize

$$\ln L(\theta) = \ln \prod_{i=1}^{n} f_X(x_i; \theta) = \sum_{i=1}^{n} \ln f_X(x_i; \theta)$$

where $\ln L: \mathbb{R}^p \to]-\infty, 0]$

Unbiasedness

Let X_1, \ldots, X_n be a random sample from $f_X(x; \theta)$. An estimator $\hat{\theta}$ is said to be unbiased if

$$E(\hat{\theta}) = \theta.$$

Efficiency (scalar)

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators for $heta \in \mathbb{R}$. If

$$\operatorname{Var}(\hat{\theta}_1) < \operatorname{Var}(\hat{\theta}_2)$$

then $\hat{\theta_1}$ is more efficient than $\hat{\theta_2}$.

Efficiency (vector)

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators for $heta\in\mathbb{R}^p$. If the matrix

$$\operatorname{Var}(\hat{\theta}_2) - \operatorname{Var}(\hat{\theta}_1)$$

is positive definite, then $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$. We note

$$Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$$

Cramer-Rao bound (scalar)

Let X_1, \ldots, X_n be a random sample from $f_X(x; \theta)$, and $\hat{\theta}$ an unbiased estimator of $\theta \in \mathbb{R}$. Under appropriate assumptions,

$$\operatorname{Var}(\hat{\theta}) \geq \left(-nE\left[\frac{\partial^2 \ln f_X(x;\theta)}{\partial \theta^2}\right]\right)^{-1}$$

$$= \left(-E\left[\frac{\partial^2 \ln L(\theta)}{\partial \theta^2}\right]\right)^{-1}$$

Cramer-Rao bound (vector)

Let X_1, \ldots, X_n be a random sample from $f_X(x; \theta)$, and $\hat{\theta}$ an unbiased estimator of $\theta \in \mathbb{R}^p$. Under appropriate assumptions,

$$\operatorname{Var}(\hat{\theta}) \ge -E[\nabla^2 \ln L(\theta)]^{-1}$$

that is

$$\operatorname{Var}(\hat{\theta}) + E[\nabla^2 \ln L(\theta)]^{-1}$$

is positive definite. The matrix

$$-E[\nabla^2 \ln L(\theta)]$$

is called the information matrix.

Asymptotic properties of estimators

Consistency

An estimator $\hat{\theta}_n$ is said to be consistent for θ if it converges in probability to θ , that is $\forall \varepsilon > 0$,

$$\lim_{n\to 0} P(|\hat{\theta}_n - \theta| < \varepsilon) = 1.$$

Asymptotic properties of estimators

Under fairly general assumptions, maximum likelihood estimators are

- consistent
- asymptotically normal
- asymptotically efficient (asymptotic variance = Cramer-Rao bound)

Warning: large sample properties

Estimator of the asymptotic variance for ML

Cramer-Rao Bound with the estimated parameters

$$\hat{V} = -\nabla^2 \ln L(\hat{\theta})^{-1}$$

• Berndt, Hall, Hall & Haussman (BHHH) estimator

$$\hat{V} = \left(\sum_{i=1}^{n} \hat{g}_i \hat{g}_i^T\right)^{-1}$$

where

$$\hat{g}_i = \frac{\partial \ln f_X(x_i; \theta)}{\partial \theta}$$

Hypothesis test: *t***-test**

Is the estimated parameter $\hat{\theta}$ significantly different from a given value θ^* ?

- $H_0: \hat{\theta} = \theta^*$
- $H_1: \hat{\theta} \neq \theta^*$

Under H_0 , if $\hat{\theta}$ is normally distributed with known variance σ^2

$$\frac{\hat{\theta} - \theta^*}{\sigma} \sim N(0, 1).$$

Therefore

$$P(-1.96 \le \frac{\hat{\theta} - \theta^*}{\sigma} \le 1.96) = 0.95 = 1 - 0.05$$

Hypothesis tests

$$P(-1.96 \le \frac{\hat{\theta} - \theta^*}{\sigma} \le 1.96) = 0.95 = 1 - 0.05$$

 H_0 can be rejected at the 5% level if

$$\left| \frac{\hat{\theta} - \theta^*}{\sigma} \right| \ge 1.96.$$

- If $\hat{\theta}$ asymptotically normal
- If variance unknown
- A t test should be used with n degrees of freedom.
- When $n \ge 30$, the Student t distribution is well approximated by a N(0,1)

Hypothesis tests

- Let X_1, \ldots, X_n be a random sample from $f_X(x; \theta)$, $\theta \in \mathbb{R}^p$
- $\hat{\theta}_U \in \mathbb{R}^p$ is the maximum likelihood estimator.
- $\hat{\theta}_R \in \mathbb{R}^q$, q < p, is the ML estimator of a restricted model.
 - e.g. $\theta_1 = \theta_2 = \ldots = \theta_p$
- *H*₀ : the restrictions are correct
- Under H_0 ,

$$-2(\ln L(\theta_R) - \ln L(\theta_U)) = -2\ln \frac{L(\theta_R)}{L(\theta_U)} \sim \chi^2(p - q)$$

