Computer Lab II

Further introduction to Biogeme Binary Logit Model Estimation

Antonin Danalet, Amanda Stathopoulos, Bilge Atasoy

Today

- Few words about semester projects for mathematicians
- Further introduction to BIOGEME
- Estimation of Binary Logit models

Pedestrian Activities from WiFi traces

- Model for pedestrian activities from WiFi traces
- Code in Python, using triangulation data (Cisco)
- To Do:
 - Needs to be adapted for Access Point data (Radius).
 Comparison with other dataset (Cisco)
 - Calibration of the model: number of people in the restaurants
 - Integrate a shortest path algorithm in Python
 - Visualization of results, e.g., how many people in Sat'
- Skills: some coding in Python, possibly visualization
- If interested talk to Antonin

Modelling the choice of vehicle

- Wider model of vehicle choice (work with car-manufacturer)
- Factor in richer behavioral variables; attitudes, dynamic factors
- To Do:
 - data elaboration
 - exploratory analysis
 - confirmatory models
 - formulate behavioral model
- Skills: large data, statistics and bonus = behavioral theories of decision-making
- If interested talk to Amanda

Today

- Few words about semester projects for mathematicians
- Further introduction to BIOGEME
- Estimation of Binary Logit models

- File extension .dat
- First row contains column / variable names
- One observation per row
- Each row must contain a choice indicator
- Example with the Netherlands transportation mode choice data: choice between car and train

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

netherlands.dat

	_				
id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
	Unique ide	entifier of ob	servations		
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time		
1	0	40	2.5	5	1.167		
2	0	35	2.016	9	1.517		
3	0	24	2.017	11.5	1.966		
4	0	7.8	1.75	8.333	2		
5	0	28	2.034	5	1.267		
		Choice indi	cator, 0: car	nd 1: train			
219	1	35	2.416	6.4	1.283		
220	1	30	2.334	2.083	1.667		
221	1	35.7	1.834	16.667	2.017		
222	1	47	1.833	72	1.533		
223	1	30	1.967	30	1.267		

- File extension . mod
- Must be consistent with data file
- Contains deterministic utility specifications, model type etc.
- The model file contains different *sections* describing different elements of the model specification

 How can we write the following deterministic utility functions for BIOGEME?

$$V_{\text{car}} = \mathsf{ASC}_{\text{car}} + \beta_{\text{time}} \mathsf{car}_{\text{time}} + \beta_{\text{cost}} \mathsf{car}_{\text{cost}}$$

$$V_{\text{rail}} = \beta_{\text{time}} \text{rail}_{\text{time}} + \beta_{\text{cost}} \text{rail}_{\text{cost}}$$


```
[Choice]
choice
[Beta]
// Name
           DefaultValue LowerBound UpperBound
                                            status
           0.0
ASC CAR
                       -100.0
                                 100.0
ASC_RAIL 0.0
                       -100.0 100.0
BETA_COST 0.0
                       -100.0 100.0
         0.0
                       -100.0 100.0
BETA TIME
[Utilities]
//Id Name Avail linear-in-parameter expression
              ASC_CAR * one + BETA_COST * car_cost +
    Car one
              BETA TIME * car_time
    Rail one
              ASC_RAIL * one + BETA_COST * rail_cost +
              BETA TIME * rail time
```



```
[Choice] choice
```

-100.0 100.0

[Utilities]

BETA TIME

0.0

```
//Id Name Avail linear-in-parameter expression

Car one ASC_CAR * one + BETA_COST * car_cost +

BETA_TIME * car_time

Rail one ASC_RAIL * one + BETA_COST * rail_cost +

BETA_TIME * rail_time
```



```
[Choice] choice
```

[Beta]

// Name	DefaultValue	LowerBound	UpperBound	status
ASC_CAR	0.0	-100.0	100.0	0
ASC_RAIL	0.0	-100.0	100.0	1
BETA_COST	0.0	-100.0	100.0	0
BETA_TIME	0.0	-100.0	100.0	0

[Utilities]


```
What is one?
[Choice]
choice
              Which is the type of model?
[Beta]
           DefaultValue LowerBound UpperBound
// Name
                                             status
ASC CAR
           0.0
                        -100.0
                                  100.0
                       -100.0 100.0
ASC RAIL 0.0
BETA_COST 0.0
                       -100.0 100.0
         0.0
                       -100.0 100.0
BETA TIME
[Utilities]
//Id Name Avail linear-in-parameter expression
              ASC_CAR * one + BETA_COST * car_cost +
    Car
         one
              BETA TIME * car time
              ASC RAIL * one + BETA_COST * rail_cost +
    Rail one
              BETA TIME * rail time
```



```
[Expressions]
// Define here arithmetic expressions for name that are not directly
// available from the data
one = 1

[Model]
// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL
// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords
//
$MNL
```


Model and Data Files

- How to read and modify model files?
 How to read data files?
 - GNU Emacs, vi, TextEdit (Mac) or Wordpad (Windows)
 - Notepad (Windows) should not be used!

BIOGEME - Results - Netherlands dataset

BIOGEME - Results

BIOGEME - Results

Today

- Further introduction to BIOGEME
- Estimation of Binary Logit models

Binary Logit Case Study

- Available datasets:
 - Airline itinerary choice (Boeing)
 - Choice-Lab marketing
 - Mode choice in Netherlands
 - Residential Telephone Services
 - Mode choice in Switzerland (Optima)
- Descriptions available on the course web site
- Optima dataset does not contain .mod files. A specification has to be proposed as an assignment.

How to go through the Case Studies

- Choose a dataset to work with (data descriptions are available on the course website)
- Copy the files related to the chosen dataset and case study from the course website.
- Study the .mod files with the help of the descriptions
- Run the .mod files with BIOGEME
- Interpret the results and compare your interpretation with the one we have proposed
- Develop other model specifications

Course website

- http://transp-or.epfl.ch/ → Teaching → Mathematical modeling of behavior → Laboratories
- BIOGEME software (including documentation and utilities)
- For each Case Study
 - Data files for available datasets
 - Model specification files
 - Possible interpretation of results

Running Biogeme

In the MXF014

accessing your folder My Documents:
 type L: in the DOS command window

To run Biogeme on your own computer

- download GUI from the course web site:
 - BIOGEME v2.2: Windows executables.zip
 - put biogeme.exe in C:\Program Files
 - OR: put winbiogeme.exe in the folder where you would like to work
 - run it by double clicking on the icon

Today's plan

- 1. Independent work on 2-3 Case Studies
 - choose case
 - estimate
 - interpret
- 2. Group work
 - listen to description of data
 - gather in groups
 - generate .mod file (base)
 - test an idea / hypothesis

OPTIMA

- Motivation: study mode choice in low density areas of switzerland
- Data-collection: Revealed Preferences (RP)
- Survey-type: Mail survey
- Collects 'loops' = cyclical sequence of trips
- database with 1906 observations
 - trip features
 - socioeconomic variables

OPTIMA - Data file

Table 1: extract 'optimaTOT3_valid.dat'

ID	TripPurpose	Choice	CoutTP1	CoutAutoCHF	age	CodeLangue
10350017	1	1	12.4	4.54	27	1
10350025	3	0	3	0.64	-1	1
10350075	1	1	24	3.38	63	1
10350085	1	1	10.8	1.66	57	1
10350086	1	1	9.6	2.71	58	1
10350100	3	1	3	1.63	80	1
10350120	3	1	24.8	6.98	64	1
10350125	3	1	4.8	0.99	68	1
10350125	3	1	2.2	0.19	68	1

Lab assignment 1

- gather group and work on your own specification of a Binary Logit on the Optima data
- examine data & variable description
- write a .mod file
- make up your own hypothesis
- test hypothesis
- results sent by mail on Friday 5th October
 - the .html file
 - .mod file
 - 2-page description

