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Introduction

• Type of data used so far: cross-sectional.

• Cross-sectional: observation of individuals at the same point in
time.

• Time series: sequence of observations.

• Panel data is a combination of comparable time series.
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Introduction

• Panel Data: data collected over multiple time periods for the
same sample of individuals.

• Multidimensional:

Individual Day Price of stock 1 Price of stock 2 Purchase
n t x1nt x2nt iint

1 1 12.3 15.6 1
1 2 12.1 18.6 2
1 3 11.0 25.3 2
1 4 9.2 25.1 0
2 1 12.3 15.6 2
2 2 12.1 18.6 0
2 3 11.0 25.3 0
2 4 9.2 25.1 1
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Introduction

Examples of discrete panel data:

• People are interviewed monthly and asked if they are working
or unemployed.

• Firms are tracked yearly to determine if they have been
acquired or merged.

• Consumers are interviewed yearly and asked if they have
acquired a new cell phone.

• Individual’s health records are reviewed annually to determine
onset of new health problems.
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Model: single time period
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Static model
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Static model

The model:

• Utility:
Uint = Vint + εint, i ∈ Cnt.

• Logit:

P (int) =
eVint

∑

j∈Cnt
eVjnt

• Estimation: contribution of individual n to the log likelihood:

P (in1, in2, . . . , inT ) = P (in1)P (in2) · · ·P (inT ) =

T
∏

t=1

P (int)

lnP (in1, in2, . . . , inT ) = lnP (in1)+lnP (in2)+· · ·+lnP (inT ) =

T
∑

t=1

lnP (int)
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Static model: comments

• Views observations collected through time as supplementary
cross sectional observations.

• Standard software for cross section discrete choice modeling
may be used directly.

• Simple, but there are two important limitations:
1. Serial correlation:

• unobserved factor persist over time,
• in particular, all factors related to individual n,
• εin(t−1) cannot be assumed independent from εint.

2. Dynamics:
• Choice in one period may depend on choices made in

the past.
• e.g. learning effect, habits.
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Dealing with serial correlation
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Panel effect

• Relax the assumption that εint are independent across t.

• Assumption about the source of the correlation:
• individual related unobserved factors,
• persistent over time.

• The model:
εint = αin + ε′int

• It is also known as
• agent effect,
• unobserved heterogeneity.
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Panel effect

• Assuming that ε′int are independent across t,

• we can apply the static model.

• Two versions of the model:
• with fixed effect: αin are unknown parameters to be

estimated,
• with random effect: αin are distributed.
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Static model with fixed effect

The model:

• Utility:
Uint = Vint + αin + ε′int, i ∈ Cnt.

• Logit:

P (int) =
eVint+αin

∑

j∈Cnt
eVjnt+αjn

• Estimation: contribution of individual n to the log likelihood:

P (in1, in2, . . . , inT ) = P (in1)P (in2) · · ·P (inT ) =

T
∏

t=1

P (int)

lnP (in1, in2, . . . , inT ) = lnP (in1)+lnP (in2)+· · ·+lnP (inT ) =

T
∑

t=1

lnP (int)
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Static model with fixed effect

Comments:

• αin capture permanent taste heterogeneity.

• For each n, one αin must be normalized to 0.

• The α’s are estimated consistently only if T → ∞.

• This has an effect on the other parameters that will be
inconsistently estimated.

• In practice,
• T is usually too short,
• the number of α parameters is usually too high,

for the model to be consistently estimated and practical.
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Static model with random effect

• Denote αn the vector gathering all parameters αin.

• Assumption: αn is distributed with density f(αn).

• For instance:
αn ∼ N(0,Σ).

• We have a mixture of static models.

• Given αn, the model is static, as ε′int are assumed independent
across t.
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Static model with random effect

The model:

• Utility:
Uint = Vint + αin + ε′int, i ∈ Cnt.

• Conditional choice probability:

P (int|αn) =
eVint+αin

∑

j∈Cnt
eVjnt+αjn
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Static model with random effect

Estimation:

• Contribution of individual n to the log likelihood, given αn

P (in1, in2, . . . , inT |αn) =

T
∏

t=1

P (int|αn).

• Unconditional choice probability:

P (in1, in2, . . . , inT ) =

∫

α

T
∏

t=1

P (int|α)f(α)dα.
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Static model with random effect

Estimation:

• Mixture model.

• Requires simulation for large choice sets.

• Generate draws α1, . . . , αR from f(α).

• Approximate

P (in1, in2, . . . , inT ) =

∫

α

T
∏

t=1

P (int|α)f(α)dα ≈
1

R

R
∑

r=1

T
∏

t=1

P (int|α
r)

• The product of probabilities can generate very small numbers.

R
∑

r=1

T
∏

t=1

P (int|α
r) =

R
∑

r=1

exp

(

T
∑

t=1

lnP (int|α
r)

)

.

Discrete Panel Data – p. 18/??



Static model with random effect

Comments:

• Parameters to be estimated: β’s and σ’s

• Maximum likelihood estimation leads to consistent and efficient
estimators.

• Ignoring the correlation (i.e. assuming that αn is not present)
leads to consistent but not efficient estimators (not the true
likelihood function).

• Accounting for serial correlation generates the true likelihood
function and, therefore, the estimates are consistent and
efficient.
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Dynamics

• Choice in one period may depend on choices made in the past

• e.g. learning effect, habits.

• Simplifying assumption:
• the utility of an alternative at time t

• is influenced by the choice made at time t− 1 only.

• It leads to a dynamic Markov model.
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Dynamic Markov model
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Dynamic Markov model

The model:
Uint = Vint + γyin(t−1) + εint, i ∈ Cnt.

yin(t−1) =

{

1 if alternative i was chosen by n at time t− 1

0 otherwise.

• Captures serial dependence on past realized state
• Example - utility of bus today depends on whether

consumer took bus yesterday (habit).
• Fails if utility of bus today depends on permanent individual

taste for bus (tastes) and whether consumer took bus
yesterday. No serial correlation.

• Estimation: same as for the static model, except that
observation t = 0 is lost.
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Dynamic Markov model with serial correlation
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Dynamic Markov model

• Extension: combine Markov with panel effect.

Uint = Vint + αin + γyin(t−1) + ε′int, i ∈ Cnt.

• Dynamic Markov model with fixed effect.
• Similar to the static model with FE.
• Similar limitations.

• Dynamic Markov model with random effect.
• Difficulties depending on how the Markov chain starts.
• If the first choice i0 is truly exogenous → similar to the static

model with RE.
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Dynamic Markov model

What if in0 is not exogenous (i.e. stochastic)?

Uin1 = Vin1 + αin + γyin0 + ε′in1, i ∈ Cn1.

• The first choice in0 is dependent on the agent’s effect αin.

• So, the explanatory variable yin0 is correlated with αin.

• This is called endogeneity.

• Solution: use the Wooldridge approach.
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Dynamic Markov model with RE - Wooldridge

• Conditional on yin0, we have a dynamic Markov model with RE
as before.

Uint = Vint + αin + γyin(t−1) + ε′int, i ∈ Cnt.

• Contribution of individual n to the log likelihood, given in0 and
αn

P (in1, in2, . . . , inT |in0, αn) =

T
∏

t=1

P (int|in0, αn).

• We integrate out αn:

P (in1, in2, . . . , inT |in0) =

∫

α

T
∏

t=1

P (int|in0, α)f(α|in0)dα.
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Dynamic Markov model with RE - Wooldridge

• The main difference between static model with RE and dynamic
model with RE is the term

f(α|in0)

• It captures the distribution of the panel effects, knowing the first
choice.

• This can be approximated by, for instance,

αn = a+ byn0 + cxn + ξn, ξn ∼ N(0,Σα).

• a, b and c are vectors and Σα a matrix of parameters to be
estimated.

• xn capture the entire history (t = 1, . . . , T ) for agent n.
• This addresses the endogeneity issue.
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Application

Cherchi and Ortuzar (2002) Mixed RP/SP models
incorporating interaction effects, Transportation
29(4), pp. 371-395.
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Application

Context

• Study done in 1998, Sardinia Island, Italy

• Cagliari-Assimini corridor (20km)

• Modal shares: car (75%), bus (20%), train (3%), other (2%)

• RP/SP data.

• Not time series, but panel structure of SP data.

• t is the index of the choice experiment instead of time.

• t = 0 corresponds to the RP observation.

• Panel effect is captured.
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Application

Estimation results
Logit with panel effect

Variable Estimate t-test Estimate t-test

Cte. train -0.727 -3.130 -0.745 -3.047

Cte. car -2.683 -6.378 -2.770 -5.775

Travel time (min) -0.061 -4.120 -0.067 -3.722

Travel cost/wage rate (euros) -1.895 -3.198 -2.364 -4.454

Waiting time (min) -0.252 -6.247 -0.270 -6.705

Comfort low -1.990 -7.328 -2.075 -6.219

Comfort avg. -1.107 -6.330 -1.187 -5.546

Transfers -0.286 -1.378 -0.316 -1.000

Panel effect std. dev. 0.840 6.348

Log likelihood -511.039 -502.959

ρ2 0.116 0.130
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Application

Average value of time by purpose (euros/min)

Logit with panel effect
Work 321 obs. 0.20 0.17
Study 285 obs. 0.05 0.04
Personal business 164 obs. 0.13 0.11
Leisure 64 obs. 0.16 0.14
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Application

Comments

• Panel effect is significant.

• Significant improvement of the fit.

• With small samples, the gain in efficiency obtained from the
panel effect may significantly improve the estimates.
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Summary

• Static model
• Straightforward extension of cross-sectional specification.
• Two main limitations: serial correlation and dynamics.

• Panel effect
• Deals with serial correlation.
• Fixed effect:

• Static model with additional parameters.
• Not operational in most practical cases.

• Random effect:
• Modifies the log likelihood function.
• Must integrate the product of the choice probabilities over

time.
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Summary

• Dynamic model, with a Markov assumption.
• Static model with an additional variable: the previous

choice.

• Dynamic model with panel effect
• Both can be combined.
• Must capture the relation between the first choice and the

panel effect.

• Application
• Illustrates the importance of the panel effect.
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