Specification Testing: Choice of Residential
Telephone Services Case

Market Segmentation

Files to use with BIOGEME:

Model files: MNL_low_inc_tel.mod, MNL_med_inc_tel.mod,
MNL_high_inc_tel.mod, MNL_socio_econ_tel.mod

Data file: tel.dat

In this case we test if there is a taste variation accross market segments. We
define different segments based on income and divide the population into
three income groups. We estimate separate models for each income group
using the same model specification, namely MNL_socto_eco_tel.mod used
in the Multinomial Logit case study, and compare the estimation results
with a model based on the complete dataset. The results in terms of final
log-likelihood are summarized in table 1.

The null hypothesis is of no taste variations across the market segments,
that is

Ho : B = Bmr = Prr

Performing a likelihood ratio test,

G
R = —2(Ln(B) — Y Ln,(B9))
g=1

= —2(—467.804 4+ 120.103 + 297.99 + 46.668) = 6.086
X<2)_95,13 = 22.36,

we can conclude that the null hypothesis cannot be rejected, that is market
segmentation on income does not exist.



Model Definition Log- Nb. of
likelihood | Coefficients
Low Income Income < 10000 -120.103 6
Medium Income | 10000 < Income < 40000 | -297.99 7
High Income Income > 40000 -46.668 7
Pooled Data
Restricted Model All -468.791 7
Table 1: Results for the market segmentation test
ITA test estimation
Variable Variable Coefficient Robust Robust
number name estimate standard error ¢ statistic
1 ASCgm 0.366 0.336 1.077
2 ASCrr -0.207 0.388 -0.532
3 ASCgr -0.357 0.843 -0.423
4 ASCma 0.165 0.530 0.312
5 BuserF 0.409 0.108 3.792
6 Bm -0.156 0.037 -4.178
7 Br -0.105 0.022 -4.'785
8 Biia 1.832 0.628 2.919
Summary statistics
Number of observations = 434
L(0) = —560.25
L(P) = —463.068
p2=0.173

Table 2: Estimation results for the ITA test




McFadden ITA Test

Files to use with BIOGEME:

Model file: mnl_tel.mod, 11a_tel.mod
Data file: tel.dat, 11a_tel.dat

Ezxcel worksheet: 1a.xls

For the telephone dataset it is probable that there are common unobserved
attributes between the measured options (alternatives BM and SM) and
we can perform the McFadden ITA test to check this. That is, first we
estimate a MNL model (mnl_tel.mod) on the full data set tel.dat. We
use the estimated values of the parameters to compute in Excel the choice
probabilities for each observation (individual) and for each alternative. As
discussed above, we suppose in this case that the subset of alternatives
suspected to be correlated is given by C = {BM,SM}. We then compute
in Excel the two corresponding auxiliary variables for each observation of
the data file to get the file 72a.zls, which we export in the Text format file
1a_tel.dat. Now we specify a new model (i2a_tel. mod) which includes the
auxiliary variables in the utility functions associated with the alternatives
SM and BM. Finally, we estimate the model on this new data file and
obtain the results reported in table 2.

The value of the parameter (;;, is significantly different from 0 at 95%
level of confidence. This indicates that IIA assumption is not valid for BM
and SM alternatives. Similarly, we can check for IIA violation among other
potential groups of alternatives (e.g. flat options). In presence of such
correlations, GEV models like the Nested Logit are more appropriate.

Test of Non-Nested Hypothesis

In discrete choice models, we often perform tests based on the so-called
nested hypothesis, which means that we specify two models such that the
first one (the restricted model) is a special case of the second one (the
unrestricted model). For this type of comparison, the classical likelihood-
ratio test can be applied. However, there are situations in which we aim to



compare models which are not nested, meaning that one model cannot be
obtained as a restricted version of another one. One way to compare two
non-nested models is to build a composite model from which both models
can be derived. We can thus perform two likelihood-ratio tests for each of
the restricted models against the composite model.

Composite Model Test

Files to use with BIOGEME:
Model files: base_tel.mod,M1_tel.mod,M2_tel.mod, MC_tel.mod
Data file: tel.dat

In this section we show a practical application of such a kind of test. We
start from a base model specification (My) from which two extensions M
and M, plus a third one (M(), including both M; and M,, are gener-
ated. The determininistic part of the utility functions for each of these
specifications are:

1. My
Vem = ASCgm + Bicostgm
Vsm = Picostsm
Vir = ASCir+ Bicostrr
Ver = ASCgr+ Bicoster
Vmr = ASCmr+ Bicostmr
2. M,

= ASCgm + Pmcostem
Vsm = Pmcostsm
Virg = ASCir+ Brcostir
Ver = ASCgr+ Brcoster
Vmr = ASCwmr+ Brcostmr



Model Nb. of parameters | Log-likelihood | p?

Base (My) 5 -482.719 | 0.129
Extension 1 (M;) 6 -476.04 0.139
Extension 2 (M;) 6 -471.151 0.148
Composite Model (M¢) 7 -467.804 0.152

Table 3: Results from the non-nested hypothesis test

3. M,
Vem = ASCgm + Bicostgm
Vsm = [icostsm
Vir = ASCir+ Bicostir+ Puserlsers
Ver = ASCgr+ Bicoster + Puseritsers
Vme = ASCmr+ Bicostmr + Puseritsers
4. M,

Vem = ASCpm + Bmcostsm
Vsm = Pmcostsm
Vi = ASCif+ Brcostir + BuserUSers
Ver = ASCgr + Brcoster + Pusertsers
Vmr = ASCmr + Brcostmr + Puseritsers

The estimation results of the different models are summarized in table 3.

We first compare the M model specification against the composite model
M by means of a likelihood ratio test: Ho: Buser =0

—2(L(Bm1) — L(Bmc)) = —2(—476.04 + 467.804) = 16.472

X3951 = 3.841 < 16.472 We can therefore reject the null hypothesis of
generic coefficients. We then compare M, against Mc: Hp: Bm = Pr
“2(L(Bwa) — L(Bme)) = —2(—471.151 + 467.804) = 6.694
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X3.951 = 3.841 < 6.694 We can therefore reject the null hypothesis of not
including socio-economic variables.

The limitation of this approach is clearly shown in this example where we
can reject the null hypothesis in both cases. Thus we reach the conclusion
that both M; and M, are rejected.

The p? test

In this procedure, the adjusted likelihood ratio index p? is used as a good-
ness of fit measure. This can be calculated using the formula:

Following the theoretical reminder, we verify the inequality:

N|—=

Pr(p2* — p1% > z) < O{—[-2NzIn(]) + (K, — K;)]2}

Here we have the difference in p? equal to z = 0.009, the number of obser-
vations N = 434, and the difference in the number of parameters between
M, and M, is zero. So, we have:

Pr(p2” — 1% > z) < ®{—3.545}
Pr(p2% — p1? > z) < 0.0002

This indicates that the probability that such a difference would be exceeded
is 0.0002. So, we can choose the model with the higher p2.



Tests of Non-Linear Specifications

In the previous case study the examples dealt with linear cost coefficients
(coefficients that remain constant throughout the whole range of the val-
ues of each variable). However, in some cases non-linear specifications
may be more justified (e.g. sensitivity to cost may not be the same in all
cost ranges). In this section we apply three different procedures we have
described in the theoretical reminder concerning the tests for non-linear
specifications. We have used the MNL model with alternative specific cost
coefficients as the base model.

Piecewise Linear Approximation

Files to use with BIOGEME:
Model file: piecewise_tel.mod
Data file:  tel.dat

In the first model we assume that the coefficient of measured cost assume
different values for different ranges of the cost variable. The full range
of values for the measured cost variable is $3.28 to $435.5. To test the
piecewise linear hypothesis the following variables are generated:

cost;; = min{cost;, 10}
costp, = max{0, min{cost; — 10,40}}
costiz = max{0, cost; — 50}

with i ={BM, SM} and cost; is the cost of the alternative i in the original
dataset. We are practically splitting the range of values for cost; (which
is cost; € [3.28,435.5], expressed in minutes) into three different intervals:
costy; € [0,10], costip € [10,50] and costiz € [50,435.5]. As mentioned
in the theoretical reminder section, the selection of these ranges is based
on a priori hypothesis of the user behavior and distribution of cost in the

7



[Expressions]
// Define here arithmetic expressions for name
// that are not directly available from the data
costll =min(costl ,10)
cost12 =max(0,min(costl - 10 ,40))
cost13 =max(0,costl - 50)
cost21 =min(cost2 ,10)
cost22 =max(0,min(cost2 - 10 ,40))
cost23 =max(0,cost2 - 50)

Figure 1: BIOGEME snapshot for the piecewise linear approximation

observed sample. The reader is encouraged to experiment different ranges.
An extract from the BIOGEME model file to code the ranges of costs is
presented in figure 1.

The utility functions are reported in equations 1.

Vem = ASCpm + Bmicostegmir + Bmecostemz + Bmscostems
Vsm = Bmicostsmr + Pmacostsmz + Bmacostsms

Virg = ASCir+ Brcostir

Ver = ASCgr+ Brcoster

Vmr = ASCumr+ Brecostmr

The estimation results are reported in table 4.

The results indicate that the sensitivity to measured cost becomes less in
the range 10 < cost; < 50 compared to the range cost; < 10, but has a steep
increase after that. This model has a better goodness-of-fit than the model
with linear coefficients in general. To test whether or not the improvement
in goodness-of-fit is statistically significant, we need to perform a likelihood
ratio test between the two different specifications.

The null hypothesis in this case is



Piecewise linear approximation

Variable Variable Coefficient Robust Robust
number name estimate standard error t statistic

1 ASCgm -0.613 0.152 -4.028

2 ASCrr -0.631 -0.450 -1.263

3 ASCgr -0.843 0.869 -0.970

4 ASCmr -0.261 0.640 -0.409

5 B -0.294 0.066 -4.443

6 Bm2 -0.149 0.067 -2.234

7 Bnm3 -4.264 0.777 -5.491

8 Br -0.105 0.022 -4.837

Summary statistics
Number of observations = 434

L£(0) = —560.25
L(B) =—474.703
p2 = 0.152694

Table 4: Estimation results for the piecewise linear approximation
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Ho: By = Bmz = PBms
The x? statistics for this null hypothesis is as follows:

—2(L(Br) — L(Bu)) = —2(—476.04 + 474.703) = 2.674
Xhos, = 5.991 > 2.674

where the restricted model (R) is represented by the linear specification
while the unrestricted model (U) corresponds to the piecewise linear spec-
ification. The improvement in goodness-of-fit due to the introduction of
the piecewise linear specification is not significant and the null hypothesis
that the cost coefficient is linear cannot be rejected.

The Power Series Expansion

Files to use with BIOGEME:
Model file: powerl_tel.mod
Data file:  tel.dat

In this test we relax the hypothesis of linear coefficients for measured op-
tions by assuming a second order power series (a squared term and a linear
term). The corresponding systematic utility functions are

Vem = ASCam + Baucostem + Baacostiy
Vsm = PBmicostsm + Bazcosting

Vir = ASCrr+ Breostir

Ver = ASCgr + Brcoster

Vmr = ASCmr+ Brcostar.

From the estimation results presented in table 5 we can see that this model
has in general a better goodness-of-fit than the model with linear coeffi-
cients. However, the coefficient of the squared term, though statistically
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Power series estimation

Variable Variable Coefficient Robust Robust
number name estimate standard error t statistic
1 ASCgm -0.563 0.147 -3.831
2 ASCrr -0.162 0.369 -0.439
3 ASCgr -0.377 0.813 -0.464
4 ASCmr 0.215 0.531 0.404
5 B -0.227 0.042 -5.319
6 B a2 0.0005 0.0001 5.073
7 Br -0.106 0.021 -4.907

Summary statistics

Number of observations = 434

£(0) = —560.25
L(B) = —475.465
p? =0.139

Table 5: Estimation results for the power series expansion
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significant, has a very small value. It may be noted that the coefficient
of the squared term is positive while the coefficient of the linear term is
negative and the coefficient of the linear term is greater than that of the
squared term. However, since the squared term is very small in magnitude,
the total effect is expected to remain negative in the cost range. To test
whether or not the improvement in goodness-of-fit is statistically signifi-
cant, we need to do a likelihood ratio test. The null hypothesis in this case
is:

Ho: Pm2=0
The x? statistics for this null hypothesis is as follows:

“2(L(Br) — L(Bu)) = —2(—476.04 + 475.465) = 1.15

where now the unrestricted model (U) corresponds to the power series spec-
ification. The improvement in goodness-of-fit due to the introduction of the
second order power specification is not significant and the null hypothesis
that the cost coefficient is linear cannot be rejected.

The Box-Cox Transformation

Files to use with BIOGEME:
Model file: bozcoz_tel.mod
Data file:  tel.dat

In this section we analyze the possibility to test for non-linear transfor-
mations of variables which are non linear in the unknown parameters. As
explained in the theoretical reminder section, one such transformation is
the Box-Cox expressed as
xN —1
A
where A is a parameter that has to be estimated. We apply such a transfor-
mation to the measured cost variable. The utilities remain the same with

12



13

[Utilities]

// Id Name Avail linear-in-parameter expression
1 BM availl ASC_1 * ome

2 SM avail2 ASC_2 * omne

3 LF avail3 ASC_3 * one + B2_FCOST * cost3
4 EF avail4d ASC_4 * one + B2_FCOST * cost4
5 MF availb ASC_5 * one + B2_FCOST * costb

[GeneralizedUtilities]
1 B1_MCOST * ( ( ( costl )~ LAMBDA - 1)/LAMBDA )
2 B1_MCOST * ( ( ( cost2 )~ LAMBDA - 1)/LAMBDA )

Figure 2: BIOGEME snapshot for the Box-Cox transformation

the substitution of the measured cost variable with its Box-Cox transforma-
tion. The BIOGEME snapshot defining such a transformation is reported
in figure 2.

The parameter A is estimated along with the other parameters (its starting
value needs to be specified as a value other than zero, since A # 0).

The estimation results are reported in table 6.

The estimate of A was not found to be significant. However, since there is
an improvement of the likelihood value, a likelihood ratio test is performed.
The null hypothesis is given by:

}{0: A=1

The x? statistics for this null hypothesis is as follows:

—2(L(B1) — L(Bac)) = —2(—476.04 + 472.624) = 6.832
Xhos1 = 3.841 < 6.832

Therefore, the null hypothesis can be rejected as the improvement in good-
ness-of-fit from introduction of the Box-Cox transformation is significant.
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Box-Cox estimation

Variable Variable Coefficient Robust Robust
number name estimate standard error t statistic

1 ASCgm -0.695 0.166 -4.195

2 ASCrr -1.756 1.202 -1.460

3 ASCer -1.977 1.386 -1.427

4 ASCmr -1.389 1.278 -1.087

5 Br -0.104 0.022 -4.832

6 Bm -1.296 0.880 -1.473

7 A 0.234 0.305 0.768

Summary statistics
Number of observations = 434

£(0) = —560.25
L(P) = —472.624
p2 =0.143

Table 6: Estimation results for the Box-Cox transformation
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