

Optimisation linéaire

Recherche opérationnelle GC-SIE

Géométrie de la programmation linéaire

Polyèdres

Définitions:

 Un polyèdre est un ensemble qui peut être décrit comme

$$P=\{x \in IR^n \mid Ax \ge b\}$$

où A est une matrice m x n et b un vecteur de IR^m.

• Note : l'ensemble admissible d'un programme linéaire est un polyèdre.

Géométrie de la program. Iinéaire

Michel Bierlaire

3

Polyèdres

Définitions:

• Un ensemble de la forme

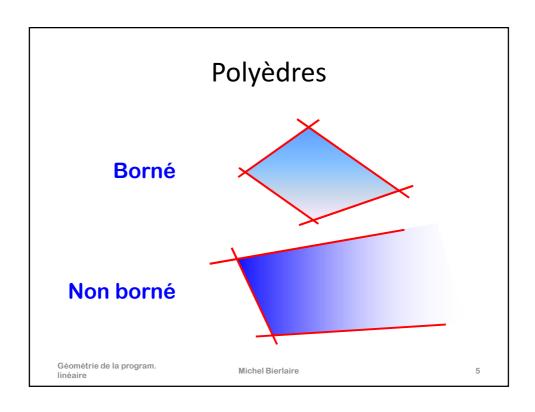
$$P=\{x\in\ IR^n\ |\ Ax=b,\, x\geq 0\}$$

est un polyèdre en forme standard.

 Un polyèdre P est dit borné si il existe une constante c telle que ¦¦x¦¦ ≤ c pour tout x ∈ P.

Géométrie de la program. Iinéaire

Michel Bierlaire



Polyèdres

Définitions:

- Soient a un vecteur non nul de IRⁿ et b un scalaire.
- L'ensemble

 $\{x \in IR^n \mid a^Tx=b\}$

est appelé un hyperplan.

L'ensemble

 $\{x \in IR^n \mid a^Tx \ge b\}$

est appelé un demi-espace.

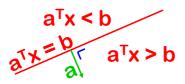
Géométrie de la program.

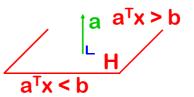
Michel Bierlaire

Polyèdres

Notes:

- Un hyperplan est la frontière du demiespace correspondant.
- Le vecteur a est perpendiculaire à l'hyperplan qu'il définit.





Géométrie de la program. linéaire

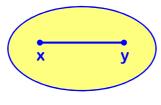
Michel Bierlaire

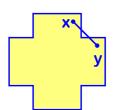
Ensembles convexes

Définition:

• Un ensemble $S \subset IR^n$ est **convexe** si pour tout $x,y \in S$, et tout $\lambda \in [0,1]$, on a

$$\lambda x + (1-\lambda)y \in S$$





Géométrie de la program. linéaire

Michel Bierlaire

Ensembles convexes

Définitions:

• Soient $x_1,...x_k$ des vecteurs de IRⁿ, et soient $\lambda_1,...,\lambda_k$ des scalaires non négatifs tels que

$$\Sigma_{i=1,...k} \lambda_i = 1$$

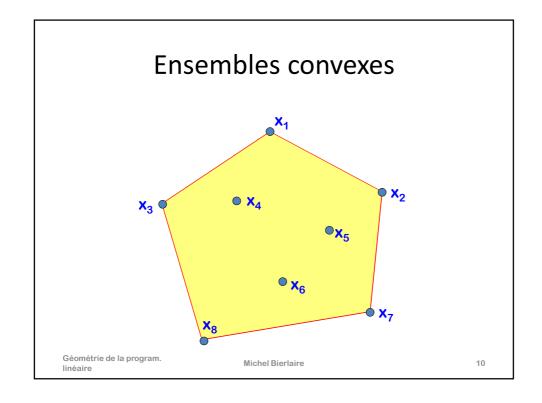
Le vecteur

$$y = \sum_{i=1,...k} \lambda_i x_i$$

est une combinaison convexe des vecteurs $x_1,...x_k$

Géométrie de la program. linéaire

Michel Bierlaire



- Concepts géométriques :
 - Point extrême
 - Sommet
- Concept algébrique :
 - Solution de base admissible
- Soit P un polyèdre, et soit x* ∈ P. Alors,
 - x* est un point extrême ssi
 - x* est un sommet ssi
 - x* est une solution de base admissible

Géométrie de la program. Iinéaire

Michel Bierlaire

11

Points extrêmes et sommets

Définition:

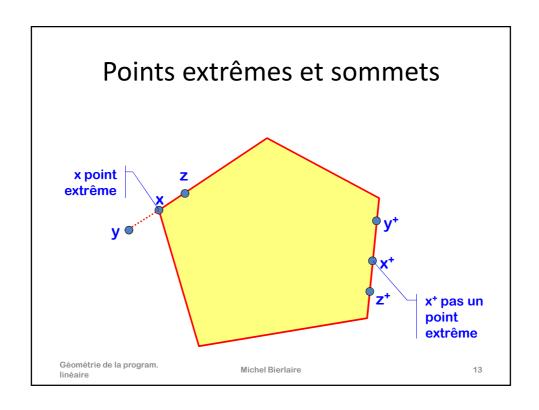
 Soit P un polyèdre. Un vecteur x ∈ P est un point extrême de P si on ne peut pas trouver deux vecteurs y et z dans P, différents de x, et un scalaire λ ∈ [0,1] tels que

$$x = \lambda y + (1-\lambda) z$$

 Soit P un polyèdre. Un vecteur x ∈ P est un point extrême de P si on ne peut pas l'exprimer comme combinaison convexe de deux autres points de P.

Géométrie de la program. linéaire

Michel Bierlaire



Définition:

 Soit P un polyèdre. Un vecteur x ∈ P est un sommet de P s'il existe c tel que

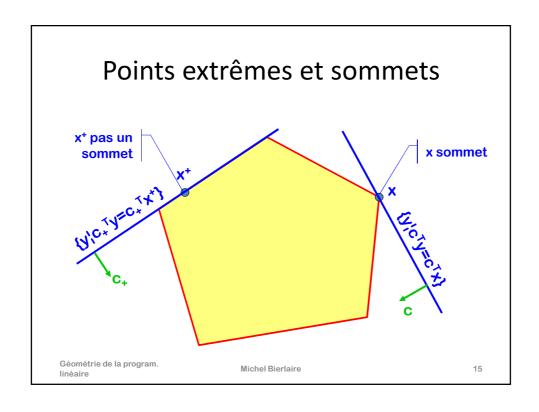
$$c^Tx < c^Ty$$

pour tout y dans P différent de x.

 Note: x est un sommet de P ssi il existe un hyperplan H={y | c^Ty = c^Tx} qui rencontre P seulement en x tel que P soit entièrement d'un côté de H.

Géométrie de la program. linéaire

Michel Bierlaire



Définition:

- Considérons un polyèdre de IRⁿ défini par les contraintes suivantes :
 - $-a_i^T x \ge b_i i \in M_1$
 - $-a_i^T x \leq b_i^T i \in M_2$
 - $-a_i^T x = b_i i \in M_3$

où M_1 , M_2 et M_3 sont des ensembles finis d'indices, chaque a_i est un vecteur de IR^n et chaque b_i un scalaire.

Si un vecteur x^* de IR^n vérifie $a_i^Tx^* = b_i$ on dit que la contrainte i est **active** en x^* .

Géométrie de la program.

Michel Bierlaire

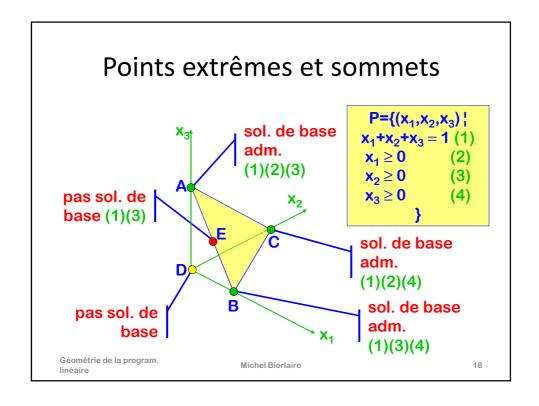
Définition:

- Considérons un polyèdre P défini par des contraintes d'égalité et d'inégalité, et soit x* un vecteur de IRⁿ.
 - x* est une solution de base si
 - 1) toutes les contraintes d'égalité sont actives,
 - 2) parmi les contraintes actives en x*, il y en a n qui soient linéairement indépendantes.

x* est une solution de base admissible si x* est une solution de base qui vérifie toutes les contraintes.

Géométrie de la program. linéaire

Michel Bierlaire



LPLab2D

Géométrie de la program. linéaire

Michel Bierlaire

19

Polyèdres en forme standard

- But : simplification de la définition de solution de base
- Polyèdre P = $\{x \in IR^n \mid Ax = b, x \ge 0\}$
- A ∈ IR^{m x n}
- m : nombre de contraintes d'égalité
- n : nombre de variables
- Hypothèse : A est de rang plein, c-à-d m lignes de A sont linéairement indépendantes.

Géométrie de la program. linéaire

Michel Bierlaire

- Par définition, toute solution de base vérifie Ax = b.
- Cela donne m contraintes actives.
- Pour avoir une solution de base, c-à-d n contraintes actives, il faut donc que n-m variables $x_i = 0$.
- Attention : le choix de ces variables n'est pas arbitraires.

Géométrie de la program. linéaire

Michel Bierlaire

Polyèdres en forme standard

Théorème:

- Soit un polyèdre $P = \{x \mid Ax = b, x \ge 0\}.$
- $A \in IR^{m \times n}$ est de rang plein.
- x* est solution de base ssi
 - $-Ax^* = b$
 - Il existe m indices B(1),...,B(m) tels que
 - Les colonnes $A_{B(1)}$,..., $A_{B(m)}$ sont lin. indép.
 - Si $i \neq B(1),...,B(m)$, alors $x_i^* = 0$.

Géométrie de la program

Michel Bierlaire

Comment obtenir une solution de base ?

- Choisir m colonnes de A lin. indép.
- Soient B=[A_{B(1)},...,A_{B(m)}] la matrice composée de ces colonnes.
- B est appelée matrice de base
- Imposer $x_i = 0$ pour tout $i \neq B(1),...,B(m)$
- Résoudre le système Bx=b pour les inconnues x_{B(1)},...,x_{B(m)}.
- Note: B est inversible

Géométrie de la program. linéaire

Michel Bierlaire

23

Polyèdres en forme standard

Géométrie de la program.

Michel Bierlaire

Résoudre:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \\ 4 \\ 6 \end{pmatrix}$$

$$x_4 = 8$$
 $x_5 = 12$ $x_6 = 4$ $x_7 = 6$

$$x_1 = 0$$
, $x_2 = 0$, $x_3 = 0$, $x_4 = 8$, $x_5 = 12$, $x_6 = 4$, $x_7 = 6$

Solution de base admissible

Géométrie de la program. linéaire

Michel Bierlaire

25

Polyèdres en forme standard

Ax=b
$$\begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 6 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \\ 4 \\ 6 \end{pmatrix}$$

$$B(1)=3$$
 $B(2)=5$ $B(3)=6$ $B(4)=7$

$$x_1 = 0$$
 $x_2 = 0$ $x_4 = 0$

Géométrie de la program. linéaire

Michel Bierlaire

Résoudre:

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 6 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_3 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \\ 4 \\ 6 \end{pmatrix}$$

$$x_3 = 4$$
 $x_5 = -12$ $x_6 = 4$ $x_7 = 6$

$$x_1 = 0$$
, $x_2 = 0$, $x_3 = 4$, $x_4 = 0$, $x_5 = -12$, $x_6 = 4$, $x_7 = 6$

Solution de base (non admissible)

Géométrie de la program. linéaire

Michel Bierlaire

27

Polyèdres en forme standard

• Résumé :

solution de base admissible = sommet = point extrême

choix d'un sommet = choix de n colonnes linéairement indépendantes de A

Géométrie de la program. linéaire

Michel Bierlaire

Optimalité

Théorème:

• Considérons le programme linéaire

 $min c^Tx$

sous contraintes $x \in P$

où P est un polyèdre.

- Si P possède au moins un point extrême
- Alors
 - soit il existe un point extrême optimal
 - soit le coût optimal est -∞

Géométrie de la program. Iinéaire

Michel Bierlaire

29

Optimalité

- Théorème:
 - Tout polyèdre non vide et borné, ainsi que tout polyèdre en forme standard non vide possède au moins une solution de base admissible
- Corollaire:
 - Considérons le programme linéaire

min c^Tx sous contraintes $x \in P$

où P est un polyèdre non vide.

- Alors
 - soit il existe un point extrême optimal
 - soit le coût optimal est -∞

Géométrie de la program.

am. Michel Bierlaire

Dégénérescence

Rappel: solution de base

- Considérons un polyèdre P défini par des contraintes d'égalité et d'inégalité, et soit x* un vecteur de IRⁿ.
 - x* est une solution de base si
 - 1) toutes les contraintes d'égalité sont actives,
 - 2) parmi les contraintes actives en x*, il y en a n qui soient linéairement indépendantes.
- Que se passe-t-il s'il y a plus de n contraintes actives ?

Géométrie de la program. linéaire

Michel Bierlaire

31

Dégénérescence

Définitions:

- Une solution de base x ∈ IRⁿ est dite **dégénérée** si plus de n contraintes sont actives en x.
- Soit $P=\{x \in IR^n \mid Ax = b, x \ge 0\}$ un polyèdre en forme standard, avec $A \in IR^{m \times n}$

Une solution de base x est **dégénérée** si plus de n-m de ses composantes sont nulles.

Géométrie de la program

Michel Bierlaire

Dégénérescence

Géométrie de la program. linéaire

Michel Bierlaire

33

Dégénérescence

Résoudre:

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 6 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_7 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \\ 4 \\ 6 \end{pmatrix}$$

$$x_1 = 4$$
 $x_2 = 0$ $x_3 = 2$ $x_7 = 6$
 $x_1 = 4, x_2 = 0, x_3 = 2, x_4 = 0, x_5 = 0, x_6 = 0, x_7 = 6$

n-m=7-4=3 4 composantes nulles Solution de base admissible dégénérée

Géométrie de la program. linéaire

Michel Bierlaire