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Multi-objective optimization

Concept

» Need for minimizing several objective functions.
» In many practical applications, the objectives are conflicting.
» Improving one objective may deteriorate several others.

Examples

» Transportation: maximize level of service, minimize costs.
» Finance: maximize return, minimize risk.

» Survey: maximize information, minimize number of questions (burden).
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Multi-objective optimization

f(x)
min F(x) = :
fp(x)
subject to
x € FCR",
where
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Why multi-objective optimization is different

Single-objective optimization
» Solutions can be totally ordered: better / worse.

» One optimal solution (or a small equivalent set).

Multi-objective optimization
» No total ordering between solutions.

» Many solutions are incomparable.

» The output is a set of solutions (Pareto set), not a single point.

Consequence
Optimization does not eliminate trade-offs — it reveals them.
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Outline

Definitions
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Dominance

Dominance
Consider x1, x, € R". x; is dominating x, if

1. X7 is no worse in any objective
VI S {11 ECE] p}v f;(X]_) < f;‘(Xz),
2. xq is strictly better in at least one objective

dJie{l,...,phfilx1) < fi(x).

Notation
x; dominates xo: F(x1) < F(xp).
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Dominance

Properties

» Not reflexive: x £ x

Not symmetric: x <y % y < x

>

» Instead: x <y =y £ x

» Transitive: x <yandy <z=x<z
>

Not complete: dx,y: x Ay and y £ x
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Dominance: example

X2

X1

Xa

X3

f
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Optimality

Pareto optimality
The vector x* € J is Pareto optimal if it is not dominated by any feasible

solution:
Fx € F such that F(x) < F(x*).

Intuition
x* is Pareto optimal if no objective can be improved without degrading at least

one of the others.
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Optimality

Weak Pareto optimality

The vector x* € J is weakly Pareto optimal if there is no x € F such that
Vi=1,...,p,

filx) < fi(x"),

Intuition
Excludes solutions that are strictly worse in all objectives.

Pareto optimality

» P*: set of Pareto optimal solutions
» WP*: set of weakly Pareto optimal solutions
> P*CWP*CHF
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Dominance: example

f

X1 X2

» Xx3: Pareto optimal.

X3 X > x1, X3, X4. weakly Pareto optimal.
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Pareto frontier

Pareto optimal set
P* ={x* € FlIx € T : F(x) < F(x*)}

Pareto frontier

PF* ={F(x")|x € P*}
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Pareto frontier
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After optimization: the decision-maker

What optimization provides

» A set of Pareto optimal solutions.

» Explicit trade-offs between objectives.

What optimization does not provide

» A unique ‘best” solution.

» Preferences between objectives.

Key message
Choosing one solution requires preferences, policy goals, or external criteria.
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Outline

Transformations into single-objective
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Weighted sum

Weights
Foreach i =1,...,p, w; > 0 is the weight of objective i.

Optimization

p
Lnelg; w;fi(x). (1)
Comments
» Weights may be difficult to interpret in practice.
» Generates a Pareto optimal solution.
» In the convex case, if x* is Pareto optimal, there exists a set of weights such
that x* is the solution of (1).

» Non convex case: weighted sums cannot generate all Pareto optimal
solutions.
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Weighted sum: example

Train service
» fi: minimize travel time
» f>: minimize number of trains

» f3: maximize number of passengers

Definition of the weights

» Transform each objective into monetary costs.
» Travel time: use value-of-time.
» Number of trains: estimate the cost of running a train.

» Number of passengers: estimate the revenues generated by the passengers.
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Goal programming

Goals
Foreachi=1,...,p, giis the “ideal” or “target” objective function defined by
the modeler.

Optimization

P
min [|F(x) — glle = | ;!F,-(x)—g,-l"f

Interpretation

» Emphasizes proximity to predefined targets.
» Encodes aspirations rather than trade-offs.

» Useful when objectives are constrained by policy or regulation.
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Lexicographic rules
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Lexicographic optimization

Sorted objective

Assume that the objectives are sorted from the most important (i = 1) to the
least important (i = p).

First problem

{th problem

subject to
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Lexicographic optimization

Strong assumption

» Objectives are strictly ordered by importance.

» Any improvement in a higher-priority objective dominates all changes in
lower-priority ones.

» Small modeling or measurement errors can have large effects.
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e-lexicographic optimization
Sorted objective and tolerances

» Assume that the objectives are sorted from the most important (i = 1) to

the least important (i = p).
» Foreachi=1,...,p, ¢; > 0 is a tolerance on the objective f.

First problem

- = Lneig f1(x)

{th problem

subject to

22/35



Outline

Constrained optimization
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e-constraints formulation

Reference objective and upper bounds

» Select a reference objective £ € {1, ..., p}.

» Impose an upper bound ¢; on each other objective.

Constrained optimization

rxnelgﬁz(X)

subject to
filx) <ei, i #L

If a solution exists, it is weakly Pareto optimal

Imposed bounds prevent improving all objectives simultaneously. However,
improvements in one objective may occur without strict deterioration in others.
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Heuristics
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Local search

Main difference with single objective
Maintain a set P of potential Pareto optimal solutions

Vx,y € P,F(x) £ F(y) and F(y) £ F(x).

Initialization
Start with a first set P of candidate solutions.

Main iteration
» Select randomly x from P and consider x™ a neighbor of x.
» Define
D(x*) ={y € P such that F(x") < F(y)}.

» Define
8(xT) ={y € P such that F(y) < F(x™)}.
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Local search

Main iteration
> IfS(xT) =10
P+ = PUxTI\ D(xH).

Property of P
Vx,y € P F(x) 4 F(y) and F(y) 4 F(x).

Proof
» For x, y different from x™, already valid in P.
» Consider xt, y € P*:
> yePT =y gD(xT) = F(xT) A Fly).
P xtePt=8(xM)=0=y&8(x")= F(y) A F(x).
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Stopping criteria in multi-objective heuristics

Common stopping rules
» Maximum number of iterations or evaluations.
» No change in the Pareto set for a given number of iterations.
» Computational budget exhausted.

Practical note

There is no guarantee of completeness — heuristics aim at approximating the
Pareto frontier.
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Example: priced knapsack

Utility Weight Cost
80 84 0.50328447
31 27 0.41431774
48 47 0.07765353
17 22 0.75842330
27 21 0.14050556
84 96 0.72089439
34 42 0.11669739
39 46 0.56723896
46 54 0.02430532
58 53 0.01255171
23 32 0.03059062
67 78 0.17285314

Objectives

» Maximize total utility,

» Minimize total cost, 20/35



Example:

local search with neighborhood k = 4
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Variable Neighborhood Search

Neighborhood of size 1 Pareto solutions: 1
Neighborhood of size 2 Pareto solutions: 16
Neighborhood of size 3 Pareto solutions: 16
Neighborhood of size 4 Pareto solutions: 16
Neighborhood of size 5 Pareto solutions: 16
Neighborhood of size 6 Pareto solutions: 16
Neighborhood of size 7 Pareto solutions: 18
Neighborhood of size 8 Pareto solutions: 19
Neighborhood of size 9 Pareto solutions: 19
Neighborhood of size 10 Pareto solutions: 19
Neighborhood of size 11 Pareto solutions: 19
Neighborhood of size 12 Pareto solutions: 19

VVyVVYVVYVVVYVYYVYYVYY

Pareto solutions: 19
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Variable Neighborhood Search
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Conclusion

Core ideas
» Multi-objective optimization reveals trade-offs.
» Optimality is defined as a set (Pareto frontier).

» Preferences are external to optimization.

Methods

» Scalarization and constraints embed preferences.
» Heuristics approximate Pareto sets efficiently.

» Problem structure drives algorithm design.

Takeaway

Optimization supports decisions — it does not replace them.
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What we did not cover
Evolutionary multi-objective algorithms
» Population-based heuristics (e.g. NSGA-1l, SPEA2, MOEA/D).
» Aim to approximate the Pareto frontier in a single run.

» Rely on the same core ideas:

» Pareto dominance,
» trade-off between convergence and diversity,

» heuristic exploration of the solution space.

Interactive multi-objective optimization
» Explicit interaction with a decision-maker during optimization.

» Preferences are progressively refined.
» Useful when preferences are vague, evolving, or difficult to formalize.

Takeaway

These methods differ mainly in implementation, not in fundamental concepts.
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Why they were not included

Focus of this lecture

» Emphasis on concepts, not on catalogues of algorithms.
» Central questions:

» What does optimality mean with several objectives?
» Why does optimization return a set of solutions?
» Where do preferences enter the process?

What you should retain
» Dominance and Pareto optimality are universal notions.
» Scalarization and constraints encode preferences.

» Heuristics approximate Pareto sets efficiently.

Key message

If you understand Pareto optimality and preference handling, you understand the
foundations of all multi-objective optimization methods.
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