Optimization and Simulation

Optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

-.'}RANSF’-UR EPFL

1/121

Outline

Motivation

2/121

Optimization

Procedure
» Mathematical modeling.

» Selection of an algorithm.

» Solving the problem.

3/121

Optimization

Mathematical modeling

» Decision variables x.
» Objective function f.
» Constraints 7.

Optimization problem

rin F(

subject to

x e JF CR"

4/121

Optimization

Selection of an algorithm

» Problem class: linear / convex / mixed-integer / black-box.
» Auvailable structure: derivatives, convexity, integrality, decomposability.
» Computational budget: cheap objective vs expensive simulation.

» Desired guarantee: exact optimum vs good feasible solution.

5/121

Simulation

Z=nhX,Y, U0 +e,

€y &

S a

’ Control — u ‘ External input — y

’ Indicators — z ‘< €2

6/121

General framework

Assumptions

» Control U is deterministic.
Z(u)=h(X, Y, u)+e,

» Various features of Z are considered: mean, variance, quantile, etc.

7/121

General framework: example

Pavel at Satellite
» X: number of customers in the bar
Y: arrivals of customers
u: average service time of Pavel
Z(u): waiting time of the customers
z1(u): mean waiting time
2 (u): maximum waiting time
flu) =g(z(v), z(u)) =21 + 2

VVVVVV

8/121

General framework: the black box

A

Control — u External input — y

Complex system — state x

9/121

Optimization problem

min f{u)

subject to
ucUCR”

» u: decision variables

» f(u): objective function
» u € U: constraints

» U feasible set

10/121

Deterministic vs simulation-based objective

Deterministic optimization

» The objective can be evaluated exactly: f(u).
» Re-evaluating f(u) returns the same value.

» Comparisons between solutions are unambiguous.

Simulation-based optimization

» The objective is defined as an expectation:

» Each evaluation is noisy: repeated runs give different values.

11/121

Coping with Monte Carlo noise

Key difficulty

When f(u) iS noisy,
» small differences between solutions may be meaningless,
» comparisons may be unreliable,

» naive optimization can be misled by randomness.

Pragmatic strategies
In practice, one often:

» uses the same random inputs to compare candidate solutions,

» increases the number of simulation runs for promising solutions,
» applies variance reduction techniques,
| 4

relies on algorithms that tolerate noise.

12/121

Scope of this lecture

What we do

» Focus on algorithmic ideas for exploring large solution spaces.

» Assume simulation noise is moderate or controlled.

» Use heuristics that are empirically robust to noise.

What we do not cover
» Statistical guarantees for noisy optimization.
» Optimal allocation of simulation budget.

» Formal convergence results for stochastic optimization.

Takeaway

Heuristic optimization and variance reduction are complementary tools for
simulation-based problems.

13/121

Optimization problem

Combinatorial optimization

» f and U have no specific property.
» f is a black box.
» U is a finite set of valid configurations.

» No optimality condition is available.

14 /121

Optimization methods
Exact methods (branch and bound)

» Finds the optimal solution.
» Suffers from the curse of dimensionality.

» Requires the availability of valid and tight bounds.

Approximation algorithms

» Finds a sub-optimal solution.

» Guarantees a bound on the quality of the solution.

» Mainly used for theoretical purposes.

Heuristics
» Smart exploration of the solution space.
» No guarantee about optimality.
» Few assumptions about the problem.

» Designed to mimic manual interventions.

15 /121

Outline

Classical problems

16 /121

The knapsack problem

Patricia prepares a hike in the mountain.
She has a knapsack with capacity Wkg.
She considers carrying a list of n items.

Each item has a utility u; and a weight w;.

vVvYyyvyy

What items should she take to maximize
the total utility, while fitting in the
knapsack?

17/121

Mathematical model
Decision variables

X =

0 otherwise

Objective function

max f(x) = Z UiX;
i=1
Constraints

n

Z Wi X < w

i=1
x€{0,1} i=1,...,

S

{ 1 if item / goes into the knapsack,

18 /121

Instance

n=12
Maximum weight: 300.

ltem Utility Weight

1

O ~NO OB~ WwN

11
12

80
31
48
17
27
84
34
39
46
58
23
67

84
27
47
22
21
96
42
46
54
53
32
78

19/121

Real example

Portfolio optimization

» Items: potential assets.
» Utility: return.

» Weight: risk.

» Capacity: maximum risk.

20/121

Traveling salesman problem

The problem

» Consider n cities.
» For any pair (i,) of cities, the distance dj; between them is known.

» Find the shortest possible itinerary that starts from the home town of the
salesman, visit all other cities, and come back to the origin.

21/121

TSP: example

Lausanne, Geneva, Zurich, Bern

Home town: Lausanne
3 possibilities (+ their symmetric version):

» L - B—~Z7Z—G—= L:572 km
» L - B—G—=7Z— L: 769 km
» L -7 —+B—G— L:575 km

22/121

TSP: 12 cities (euclidean dist.)

[It}
[]
®x
| =

ou
[Jo

[I
o~
[FS

ouw

23/121

Integer linear optimization problem

Linear optimization Integer Linear optimization
min ¢ x min ¢’ x
XER" XeRn
subject to subject to
x = 0. xeN.

where A € R™" be R™ and c € R". where A €¢ R™*" b€ R™ and c € R".

24 /121

Feasible set

Intersection polyhedron /integer
Polyhedron lattice

A

25/121

Example

min —3X1 - 13X2
x€R2

subject to
2X1 + 9X2 < 40
11X1 - 8X2 < 82
X1, %X = 0
x1, X% € N

26 /121

Example

27/121

Outline

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

28 /121

Outline

Motivation
Classical problems

Algorithms
Brute force

Summary

29/121

Brute force algorithm

e

subject to
ueUCR”

Brute force algorithm
> f* =400
» For each x € U, if f(x) < f* then x* = x, f* = f(x*).

30/121

Knapsack problem

Enumeration
» Each object can be in or out, for a total of 2” combinations.
» For each of them, we must:

» Check that the weight is feasible.
» If so, calculate the utility and check if it is better than 7*.

31/121

Python implementation

import numpy as np
import itertools
utility = np.array([80, 31, 48, 17, 27, 84, 34, 39, 46, 58, 23, 67])
weight = np.array([84, 27, 47, 22, 21, 96, 42, 46, 54, 53, 32, 78])
capacity = 300
n = len(utility)
fstar = -np.inf
xstar = None
for ¢ in itertools.product([0, 1], repeat = n):
w = np.inner(c, weight)
if w <= capacity:
u = np.inner(c, utility)
if u > fstar:
xstar = ¢
fstar = u

Solution: (1, 1,1,1,1,0,0,1,0,1,0,0). Weight: 300. Utility: 300.

32/121

Knapsack problem

Computational time

» About 2n floating point operations per combination.

» Assume a 1 Teraflops processor: 10'2? floating point operations per second.

33/121

Knapsack problem

Computational time

» If n = 34, about 1 second to solve.

» |f n =40, about 1 minute.

» If n =45, about 1 hour.

» If n =50, about 1 day.

» If n =58, about 1 year.

» If n =69, about 2583 years, more than the Christian Era.

» If n =78, about 1,500,000 years, time elapsed since Homo Erectus appeared
on earth.

» If n =91, about 10 years, roughly the age of the universe.

34/121

Traveling salesman problem
Python code

fstar = np.inf
xstar = None
for t in itertools.permutations(names[1:]):
tour = [’0°]+1list(t)
tl = tsp.tourLength(tour)
if t1 < fstar:
xstar = tour
fstar tl

TSP with 12 cities
» 11! = 39'916'800 permutations.
» Running time: about 5 minutes.
» Solution: H-4-3-2-6-1-5-9-10-11-7-8
» Tour length: 128.762

35,121

Optimal solution

Total length: 128.8
10

36121

Integer optimization

min —3X1 - 13X2
x€R2

subject to
2X1 + 9X2 < 40
11X1 - 8X2 < 82
x,x = 0
X1, % €N

37/121

Feasible set: 36 solutions

38121

Brute force algorithm

Comments
» Very simple to implement.
» Works only for small instances.
» Curse of dimensionality.
» Running time increases exponentially with the size of the problem.

» Not a reasonable option.

39/121

Outline

Motivation
Classical problems

Algorithms

Greedy heuristics

Summary

40/121

Greedy heuristics

Principles

» Step by step construction of a feasible solution.
» At each step, a local optimization is performed.
» Decisions taken at previous steps are definitive.

Properties

» Easy to implement.
» Short computational time.
» May generate poor solutions.

» Used to generate initial solutions.

41/121

The knapsack problem

Greedy heuristic

» Sort the items by decreasing order of u;/w;.
» For each item in this order, put it in the sack if it fits.

42/121

The knapsack problem

ltem Utility Weight Ratio
1 80 84 0.952
2 31 27 1.148
3 48 47 1.021
4 17 22 0.773
5 27 21 1.286
6 84 96 0.875
7 34 42 0.810
8 39 46 0.848
9 46 54 0.852
10 58 53 1.094
11 23 32 0.719
12 67 78 0.859

43 /121

The knapsack problem

Item Utility Weight Ratio | Order Remaining capacity
1 80 84 0.952 5 68
2 31 27 1.148 2 252
3 48 47 1.021 4 152
4 17 22 0.773
5 27 21 1.286 1 279
6 84 96 0.875 6 -28
7 34 42 0.810
8 39 46 0.848
9 46 54 0.852

10 58 53 1.094 3 199
11 23 32 0.719
12 67 78 0.859

Utility: 244 (Opt: 300). Weight: 232.

44 /121

The traveling salesman problem

Greedy heuristic

» Start from home.

» At each step, select the closest city as the next one.

45 /121

TSP: 12 cities

10
9 o]
o]
8
Q
11
[}
7 H
® |
6
o]
5
™
1 2 4
° L °®
3
o]

46 /121

TSP: 12 cities

Total length: 165.6
10

47 /121

TSP: 12 cities

Greedy solution

» Easy to generate.

No combinatorial complexity.
Not necessarily good.
Length: 165.6.

>
>
>
» Optimal tour: 128.762.

48 /121

Integer optimization

Intuitive approach

» Solve the continuous relaxation.

» Round the solution.

49 /121

Example

min —3X1 - 13X2
x€R2

subject to
2X1 + 9X2 < 40
11X1 - 8X2 < 82
X1, %X = 0
x1, X% € N

50 /121

Relaxation: feasible set

51/121

Optimal solution of the relaxation

Opt. solution relaxation (9.2,2.4)

52/121

Integrality constraints

Opt. solution relaxation (9.2,2.4)

53 /121

Infeasible neighbors

Opt. solution relaxation (9.2,2.4)

54 /121

Solution of the integer optimization problem

Opt. solution relaxation (9.2,2.4)

55 /121

Issues

» There are 2" different ways to round. Which one to choose?
» Rounding may generate an infeasible solution.
» The rounded solution may be far from the optimal solution.

56 /121

Greedy heuristics

Comments
» Fast.
» Easy to implement.
» Useful to find an initial solution.

» Feasibility is usually the main issue (rounding issues with ILP).

57/121

Outline

Motivation
Classical problems

Algorithms

Exploration

Summary

58 /121

Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification
Escape from local minima

59 /121

Optimization vs sampling: a useful analogy

Sampling (MCMC)

» Goal: explore the state space according to a target distribution.

» Moves are accepted to preserve the stationary distribution.

Optimization (heuristics)
» Goal: explore the same type of space to find low values of f(x).
» Moves are designed to favor improvement, with mechanisms to escape local
minima.
Key message

Both rely on neighborhood moves; the difference is whether we aim to sample or
to optimize.

60 /121

Neighborhood

Concept

» The feasible set is too large.
» We need to explore it in a smart way.

» Idea: at each iteration, restrict the optimization problem to a small feasible
subset that can be enumerated.

» The small subset is called a neighborhood.
» Ideally, all these solutions must be feasible.

» Neighborhoods can be constructed incrementally during the algorithms.

61/121

Neighborhood types

Fundamental neighborhood structure

» Obtained from simple modifications of the current solution.

» These modifications must be designed based on the properties of the
problem.

Shuffled neighborhood structure

» Obtained from shuffling the solutions from another neighborhood.

» The shuffling can be deterministic or random.

Feasible neighborhood structure

» Useful when a potential neighborhood structure contains infeasible solutions.
» Feasibility checks can also be done while generating the neighbors.

62/121

Neighborhood types

Truncated neighborhood structure

» Useful when a potential neighborhood structure is too large.

» The size of the neighborhood is controlled.

Combined neighborhood structure

» Union, intersection, or any combination of other structures.

» Use building blocks to construct more complex structures.

63/121

Neighborhoods

Important properties

>

>
| 4
>

Neighborhood structures are used to explore the solution space.
Algorithms will move from x to an element of V/(x).
They can be seen as “vehicles”.

Symmetry: it is good practice to use symmetric neighborhoods:
y € V(x) <= x € V(y).

Reachability: a neighborhood V must be rich enough to reach any feasible
solution, from another feasible solution. For each x;, xx € U, there exists a
sequence xo, ..., xx_1 € U such that

Xk+1EV(Xk), k=1,..., K—1.

Analogy with Markov chains: irreducibility.

64 /121

What

makes a good neighborhood?

Design checklist

>
>

>

Reachability: can we reach all feasible solutions (in principle)?

Feasibility handling: generate only feasible neighbors or repair /filter
infeasible ones.

Cost of evaluation: neighbors should be cheap to evaluate (use
incremental updates when possible).

Balance: too small = stuck; too large = expensive enumeration.

Symmetry (often useful):

y € V(x) <= x € V(y).

65 /121

Integer optimization

66 /121

Integer optimization

» Consider the current iterate x € Z".

» Foreach k=1,..., n, define 2 neighbors by increasing and decreasing the
value of x, by one unit.

» The neighbors y** and y*~ are defined as

it =y T =xVitk yT=x+1 y< =x—1

» Example
x=1(3,528) y* =(3,6,2,8) y* =(3,4,238)

» Size of the neighborhood: 2n.
» Feasibility should also be enforced.
» If nis large, truncation may be useful.
» The order is arbitrary, but must be specified.
» Shuffling may be useful.

67 /121

Integer optimization

Creativity
» The concept of neighborhood is fairly general.
» It must be defined based on the structure of the problem.

» Creativity is required here.

68 /121

Integer optimization

Combinations
» Combining neighborhoods is easy.
» Trade-off between flexibility and complexity.

69 /121

Integer optimization

Properties

» Verify the properties.
» Symmetry and reachability.

70/121

The knapsack problem

Fundamental neighborhood

» Current solution: for each item i, x; = 0 or x; = 1.

» Neighbor solution: select an item j, and change the decision: x; - 1 — Xx;.

» Warning: check feasibility.

» Generalization: neighborhood of size k: select k items, and change the
decision for them (checking feasibility).

» Order: based on the utility/weight ratio, for instance.

71/121

The knapsack problem

Truncated neighborhood

» A neighborhood of size k modifies k variables.
» Number of neighbors:

n!
Kl(n— k)t
» k =1: n neighbors.
» k = n: 1 neighbor.
» Useful to truncate to M.
» Size of the neighborhood:
n!

min(Rl

72/121

Python code

def neighborhood(sack, size = 1, random = True, truncated = None):
n = len(sack)
combinations = np.array(list(itertools.combinations(range(n), size)))
if random:
np.random.shuffle(combinations)
if truncated is not None:
combinations = combinations[:truncated]
theNeighborhood = []
for ¢ in combinations:
s = np.array(sack)
slc] = 1 - sackl[c]
theNeighborhood.append(s)
return theNeighborhood

73/121

Traveling salesman problem

2-OPT
» Select two cities.
» Swap their position in the tour.

> Visit all intermediate cities in reverse order.

Example
Current tour:

A-B-C-D-E-F-G-H-A
Exchange C and G to obtain

A-B-G-F-E-D-C-H-A.

74 /121

Traveling salesman problem

Example: 2-OPT(1,9)
» Try to improve the solution using 2-OPT swapping 1 and 9.
» Before: H-8-7-11-6-5-1-2-3-4-10-9-H (length: 165.6)
> After : H-8-7-11-6-5-9-10-4-3-2-1-H (length: 173.3)
» No improvement.

75/121

Neighborhood: 2-OPT(1,9) before

Total length: 165.6
10

76 /121

Neighborhood: 2-OPT(1,9) after

Total length: 173.3
10

77/121

Exploration

Comments

>

vvyyvyy

vy

Design of “vehicles” to explore the solution space.

Fundamental neighborhoods exploit the structure of the problem.
Various operations allow to modify and combine neighborhoods.
Trade-off between flexibility and complexity.

The neighborhood must be sufficiently large to increase the chances of
improvement, and sufficiently small to avoid a lengthy enumeration.

Example of a neighborhood too small: one neighbor at the west.

Example of a neighborhood too large: each feasible point is in the
neighborhood.

78 /121

Outline

Motivation
Classical problems

Algorithms

Intensification

Summary

79/121

Local

v

search: version one

Consider the combinatorial optimization problem
min £ (x)

subject to
x € U.

Consider the neighborhood structure V/(x), where V/(x) is the set of feasible
neighbors of x.

At each iteration k, consider the neighbors in V/(x,) one at a time.

For each y € V(x), if f(y) < f(xx), then x,1 = y and proceed to the next
iteration.

If f(y) > f(xk), Yy € V(xxk), x« is a local minimum. Stop.

80 /121

ocal search: version two

» Consider the combinatorial optimization problem
min f(x)

subject to
x € U
» Consider the neighborhood structure V/(x) (set of neighbors of x).
» At iteration k, select a best neighbor

€ arg min f(v).
y ngV(xk) ()

» If f(y) > f(xk), then xi is a local minimum. Stop.

» Otherwise, set x, 1 = y and continue.

81,121

Local search: example

min —3X1 - 13X2
x€R2

subject to
2X1 + 9X2 < 40
11x; —8x, < 82
X1, X0 € N

82/121

Local search: example

83/121

Local search: example

xg = (6,0) - Neighborhood: E-N-W -S

84121

Local search: example

xo = (0, 3) - Neighborhood: E-N-W -S

85,121

Local search: example

Xo = (6,0) - Neighborhood : N-W -S-E

86 /121

The knapsack problem

max u X
x€{0,1}"

subject to

87/121

The knapsack problem

def localSearch(u, w, capacity, initSolution, neighborhood):
x = initSolution
ux = np.inner(u, x)
wx = np.inner(w, x)
if wx > capacity:
Exception(f’Infeasible weight {wx} > {capacity}’)
localOptimum = False
while not localOptimum:
neighbors = neighborhood(x)
localOptimum = True
for y in neighbors:
wy = np.inner(w, y)
if wy <= capacity:
uy = np.inner(u, y)
if uy > ux:
localOptimum = False

X =y
ux = uy
WX = Wy

88 /121

The knapsack problem

def neighborhoodl(sack) :

return neighborhood(sack, size

firstSack = np.array([0]*n)

localSearch(utility, weight,

First sack: [0 0000000
New sack : [1 0000000
New sack : [0 0000100
New sack : [1 0000100
New sack : [1 1000100
New sack : [1 0100100
New sack : [1 0000100
New sack : [1 0000100
New sack : [1 1000100
New sack : [1 0000110

capacity, firstSack, neighborhoodl)
U=0 W=

O OO OO O OO oo
O OO OO O OO
O O O OO OO oOOo

0

0

0]
0]
0]
0]
0]
0]
0]
1]
1]
1]

1, random =

0

U=80 W=84
U=84 W=96

U=164
U=195
U=212
U=222
U=231
U=262
U=265

W=180
W=207
W=227
W=233
W=258
W=285
W=300

False, truncated = None)

89 /121

The knapsack problem

def neighborhood2(sack) :

return neighborhood(sack, size = 3, random = False, truncated = None)

firstSack = np.array([0]*n)
localSearch(utility, weight,

First sack: [0 0000000
New sack : [1 1100000
New sack : [1 1000100
New sack : [1 0100100
New sack : [1 0000100
New sack : [1 0000100
New sack : [01 000100
New sack : [00 100100
New sack : [0 0100100
New sack : [1 0100100
New sack : [1 0100100
New sack : [00110100
New sack : [0 0101100
New sack : [1 0001101

capacity, firstSack, neighborhood2)
U=0 W=

O O OO O, OO OO O OO OoO
B B, R R, OROROROOO
O OO OO OO OO OO oo

0

0

0]
0]
0]
0]
0]
1]
1]
1]
1]
0]
0]
1]
1]
0]

U=159
U=195
U=212
U=222
U=231
U=240
U=245
U=257
U=258
U=270
U=274
U=284
U=288

0

W=158
W=207
w=227
W=233
W=258
W=254
W=275
W=274
W=281
W=280
W=296
W=295
W=300

90 /121

Traveling salesman problem

Procedure
» Start with the outcome of the greedy algorithm.

» Use the 2-OPT neighborhood.
» Use version two of the local search.

01/121

Current tour

Total length: 165.6
10

02/121

Best neighbor: 2-OPT(8,4)

Total length: 155.8
10

03 /121

Best neighbor: 2-OPT(8,9)

Total length: 143.0
10

04 /121

Best neighbor: 2-OPT(11,7)

Total length: 139.5
10

05 /121

Best neighbor: 2-OPT(7,10)

Total length: 137.5
10

96 /121

Best neighbor: 2-OPT(10,9)

Total length: 130.7
10

07/121

Comments

» The algorithm stops at a local minimum, that is a solution better than all its
neighbors.

» The outcome depends on the starting point and the structure of the
neighborhood.

» Several variants are possible.

08 /121

Outline

Motivation
Classical problems

Algorithms

Diversification

Summary

99/121

Changing the starting point

ldea

» Launch the local search from several starting points.

» Select the best local optimum.

Issues
» Feasibility.

» Same local optimum may be generated many times.

» Shooting in the dark.

100 /121

Variable Neighborhood Search

» aka VNS
» |dea: consider several neighborhood structures.

» When a local optimum has been found for a given neighborhood structure,
continue with another structure.

101 /121

VNS: method

Input » Vi, Vs, ..., Vk neighborhood structures.
» Initial solution xp.

Initialization P x. < X
> k<1

Iterations Repeat
» Apply local search from x. using neighborhood V

xT < LS(x., Vi)

> If f(xT) < f(x.), then x. < x™, k < 1.
» Otherwise, k + k+ 1.

Until kK = K.

102 /121

VNS: example for the knapsack problem

» Neighborhood of size k: modify k variables.

» Local search: current iterate: x.

» randomly select a neighbor x™*

» ifwxt <Wand u”xt > u'x., then x. + x*

103 /121

VNS: example for the knapsack problem

300

200

UTX

100

—— Best

6 8 10 12

Iterations

14

16

18 20

—=NW

Neighborhood

104 /121

Simulated annealing

Analogy with metallurgy
» Heating a metal and then cooling it down slowly improves its properties.
» The atoms take a more solid configuration.
In optimization:
» Local search can both decrease and increase the objective function.
» At “high temperature”, it is common to increase.
> At “low temperature”, increasing happens rarely.

» Simulated annealing: slow cooling = slow reduction of the probability to
increase.

105 /121

Simulated annealing

Modify the local search.

For the sake of simplicity: consider a neighborhood structure containing only
feasible solutions.

Let x, be the current iterate

» Select y € V(x).
> If f(y) < f(x), then X1 = .
» Otherwise, xx 1 = y with probability

e

fFly)—flx)
T

with T > 0.

Concretely, draw r between 0 and 1.
Accept y as next iterate if

106 /121

Simulated annealing

1 it Fy) < fx)

P b = = y)—1(Xx
ey { f £y) > Flx)

» If T is high (hot temperature), high probability to increase.
» If T is low, almost only decreases.

107 /121

Simulated annealing

Example : f(x() =3

1

0.8

=y)

0.6

0.4

Prob(x 1

108 /121

Simulated annealing

» In practice, start with high T for flexibility.
» Then, decrease T progressively.

109 /121

Simulated annealing

[nput » Initial solution xg
» Initial temperature Ty, minimum temperature T¢
» Neighborhood structure V/(x)
» Maximum number of iterations K

Initialize xc < Xg, X* < xo, T + Tp

110 /121

Simulated annealing

Repeat kK + 1

» While k < K
> Randomly select a neighbor y € V/(x.)
> 5« fly)—flxc)
> If5 <0, xc=y.
» Otherwise, draw r between 0 and 1

> If r < exp(—08/T), then x. =y

> If f(xc) < F(x*), x* = xc.
> k< k+1

» Reduce T

Until T < Tf

111/121

Example: traveling salesman problem

800

600

400

200

Iter.

112/121

Best solution found (optimal!)

Total length: 128.8
10

113 /121

Practical comments

» Parameters must be tuned.
» In particular, the reduction rate of the temperature must be specified.

P Let &; be a typical increase of the objective function.

» In the beginning, we want such an increase to be accepted with probability
po (e.g. po =0.999)

» At the end, we want such an increase to be accepted with probability pr
(e.g. pr =0.00001)

» We allow for M updates of the temperature. So, for m=0, ..., M,

ot
In(po + P32 m)

T=—

114 /121

Simulated annealing and MCMC

Key connection
Simulated annealing applies Metropolis—Hastings to the distribution

7t (x) o< exp (—L;_()) :

where T > 0 is the temperature.

Interpretation

» High T: exploration (many uphill moves accepted).
» Low T: exploitation (mostly downhill moves).
» Cooling schedule: gradually shifts from exploration to exploitation.

Takeaway
Annealing is a meta-heuristic that uses an MCMC mechanism to escape local

minima.
115 /121

Comments

How to avoid being blocked in a local minimum?
» Apply an algorithm from multiple starting points.

» How to find feasible starting point?
» How to avoid shooting in the dark?

» Change the structure of the neighborhood: variable neighborhood search
» How to choose the neighborhood structures?
» Allow the algorithm to proceed upwards: simulated annealing

» Climb the mountain to find another valley.
» How to decide when it is time to climb or to go down?

116 /121

Outline

Summary

117/121

Combinatorial optimization

Characteristics
» f and U have no specific property.
» f is a black box.
» U is a finite set of valid configurations.

» No optimality condition is available.

118 /121

Optimization methods
Exact methods (branch and bound)

» Finds the optimal solution.
» Suffers from the curse of dimensionality.

» Requires the availability of valid and tight bounds.

Approximation algorithms

» Finds a sub-optimal solution.

» Guarantees a bound on the quality of the solution.

» Mainly used for theoretical purposes.

Heuristics
» Smart exploration of the solution space.
» No guarantee about optimality.
» Few assumptions about the problem.

» Designed to mimic manual interventions.

119/121

Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification
Escape from local minima

120/ 121

Meta-heuristics

v

Methods designed to escape from local optima are sometimes called
“meta-heuristics” .

Plenty of variants are available in the literature.

In general, success depends on exploiting well the properties of the problem
at hand.

VNS is one of the simplest to code.

Additional bio-inspired methods have also been proposed and applied:
genetic algorithms, ant colony optimization, etc.

121 /121

	Motivation
	Classical problems
	Algorithms
	Brute force
	Greedy heuristics
	Exploration
	Intensification
	Diversification

	Summary

