

Optimization and Simulation

Optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

EPFL

Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

Optimization

Procedure

- ▶ Mathematical modeling.
- ▶ Selection of an algorithm.
- ▶ Solving the problem.

Optimization

Mathematical modeling

- ▶ Decision variables x .
- ▶ Objective function f .
- ▶ Constraints \mathcal{F} .

Optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to

$$x \in \mathcal{F} \subseteq \mathbb{R}^n.$$

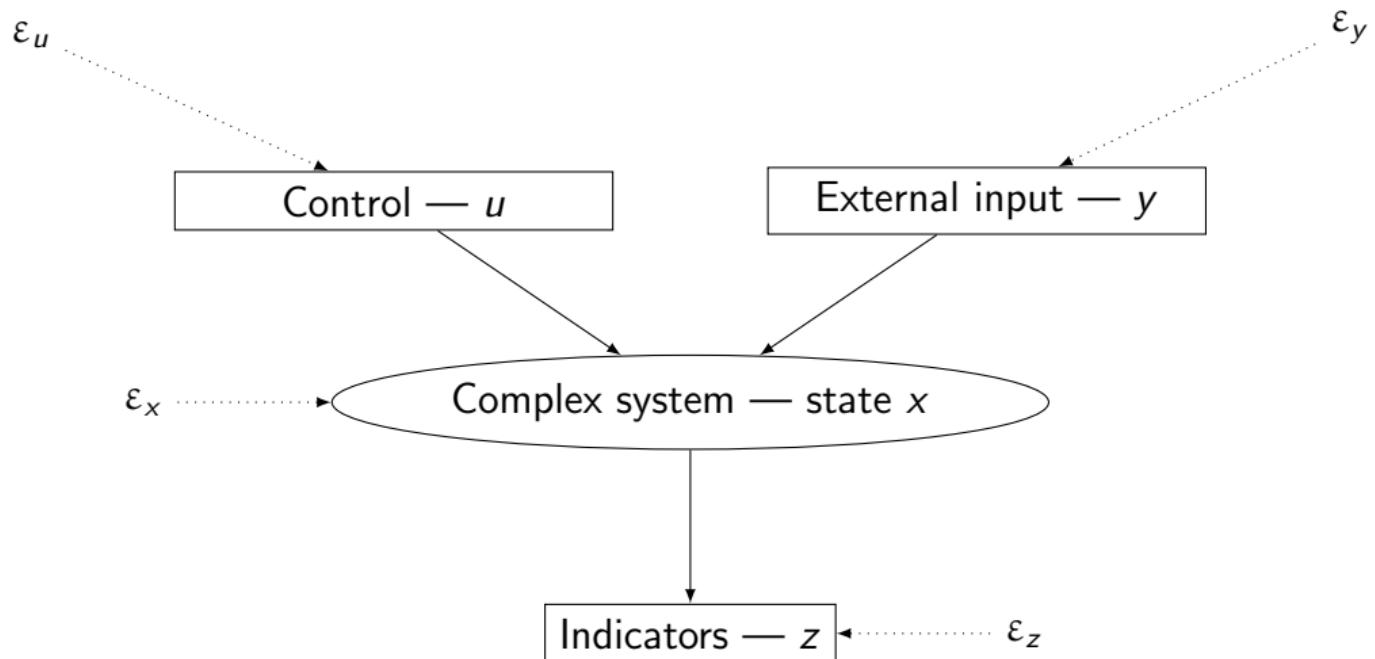
Optimization

Selection of an algorithm

- ▶ **Problem class:** linear / convex / mixed-integer / black-box.
- ▶ **Available structure:** derivatives, convexity, integrality, decomposability.
- ▶ **Computational budget:** cheap objective vs expensive simulation.
- ▶ **Desired guarantee:** exact optimum vs good feasible solution.

Simulation

$$Z = h(X, Y, U; \hat{\theta}) + \varepsilon_z$$



General framework

Assumptions

- ▶ Control U is deterministic.

$$Z(u) = h(X, Y, u) + \varepsilon_z$$

- ▶ Various features of Z are considered: mean, variance, quantile, etc.

$$(z_1(u), \dots, z_m(u))$$

- ▶ They are combined in a single indicator:

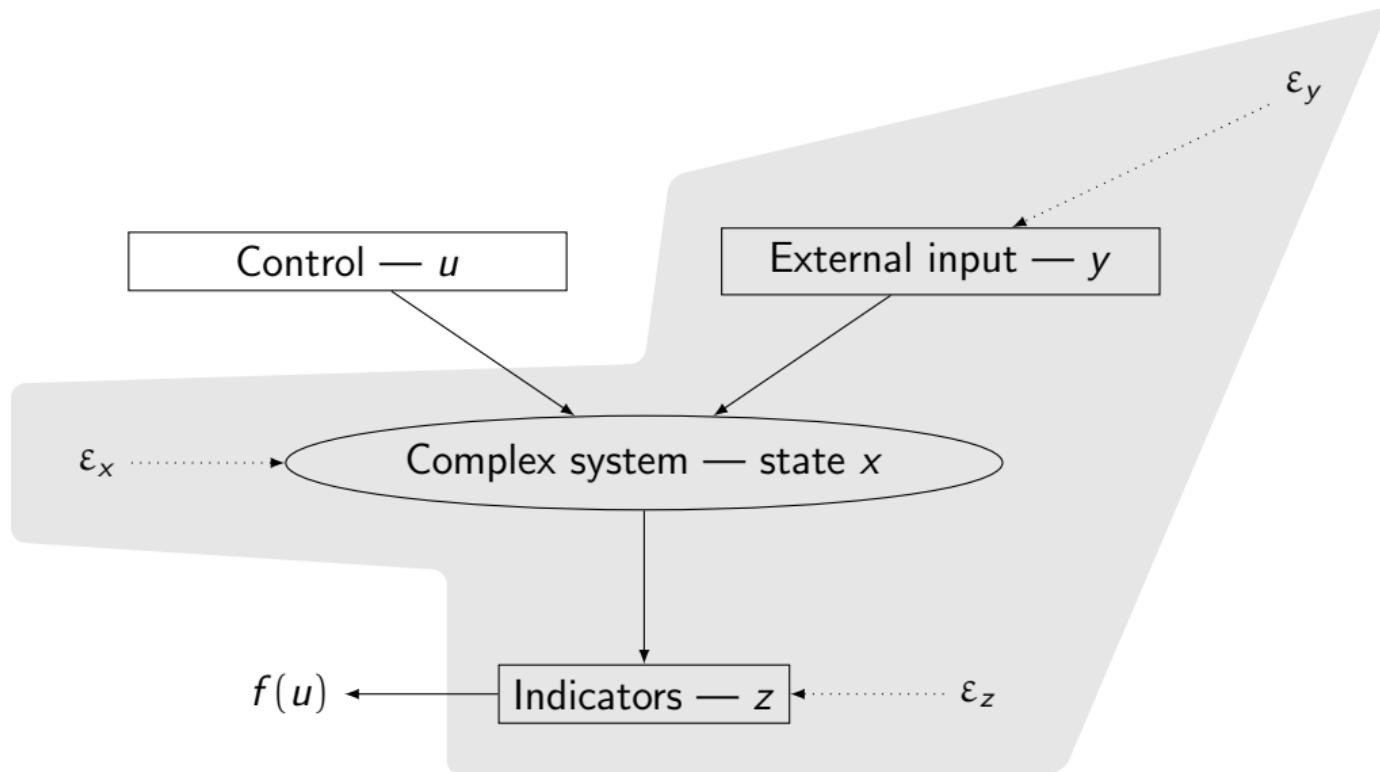
$$f(u) = g(z_1(u), \dots, z_m(u))$$

General framework: example

Pavel at Satellite

- ▶ X : number of customers in the bar
- ▶ Y : arrivals of customers
- ▶ u : average service time of Pavel
- ▶ $Z(u)$: waiting time of the customers
- ▶ $z_1(u)$: mean waiting time
- ▶ $z_2(u)$: maximum waiting time
- ▶ $f(u) = g(z_1(u), z_2(u)) = z_1 + z_2$

General framework: the black box



Optimization problem

$$\min_{u \in \mathbb{R}^n} f(u)$$

subject to

$$u \in \mathcal{U} \subseteq \mathbb{R}^n$$

- ▶ u : decision variables
- ▶ $f(u)$: objective function
- ▶ $u \in \mathcal{U}$: constraints
- ▶ \mathcal{U} : feasible set

Deterministic vs simulation-based objective

Deterministic optimization

- ▶ The objective can be evaluated exactly: $f(u)$.
- ▶ Re-evaluating $f(u)$ returns the same value.
- ▶ Comparisons between solutions are unambiguous.

Simulation-based optimization

- ▶ The objective is defined as an expectation:

$$f(u) = \mathbb{E}[Z(u)].$$

- ▶ It is evaluated using simulation:

$$\hat{f}(u) \approx f(u).$$

- ▶ Each evaluation is noisy: repeated runs give different values.

Coping with Monte Carlo noise

Key difficulty

When $\hat{f}(u)$ is noisy,

- ▶ small differences between solutions may be meaningless,
- ▶ comparisons may be unreliable,
- ▶ naive optimization can be misled by randomness.

Pragmatic strategies

In practice, one often:

- ▶ uses the same random inputs to compare candidate solutions,
- ▶ increases the number of simulation runs for promising solutions,
- ▶ applies variance reduction techniques,
- ▶ relies on algorithms that tolerate noise.

Scope of this lecture

What we do

- ▶ Focus on algorithmic ideas for exploring large solution spaces.
- ▶ Assume simulation noise is moderate or controlled.
- ▶ Use heuristics that are empirically robust to noise.

What we do not cover

- ▶ Statistical guarantees for noisy optimization.
- ▶ Optimal allocation of simulation budget.
- ▶ Formal convergence results for stochastic optimization.

Takeaway

Heuristic optimization and variance reduction are complementary tools for simulation-based problems.

Optimization problem

Combinatorial optimization

- ▶ f and \mathcal{U} have no specific property.
- ▶ f is a black box.
- ▶ \mathcal{U} is a finite set of valid configurations.
- ▶ No optimality condition is available.

Optimization methods

Exact methods (branch and bound)

- ▶ Finds the optimal solution.
- ▶ Suffers from the curse of dimensionality.
- ▶ Requires the availability of valid and tight bounds.

Approximation algorithms

- ▶ Finds a sub-optimal solution.
- ▶ Guarantees a bound on the quality of the solution.
- ▶ Mainly used for theoretical purposes.

Heuristics

- ▶ Smart exploration of the solution space.
- ▶ No guarantee about optimality.
- ▶ Few assumptions about the problem.
- ▶ Designed to mimic manual interventions.

Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

The knapsack problem

- ▶ Patricia prepares a hike in the mountain.
- ▶ She has a knapsack with capacity W kg.
- ▶ She considers carrying a list of n items.
- ▶ Each item has a utility u_i and a weight w_i .
- ▶ What items should she take to maximize the total utility, while fitting in the knapsack?

Mathematical model

Decision variables

$$x_i = \begin{cases} 1 & \text{if item } i \text{ goes into the knapsack,} \\ 0 & \text{otherwise} \end{cases}$$

Objective function

$$\max f(x) = \sum_{i=1}^n u_i x_i$$

Constraints

$$\sum_{i=1}^n w_i x_i \leq W$$
$$x_i \in \{0, 1\} \quad i = 1, \dots, n$$

Instance

$n = 12$

Maximum weight: 300.

Item	Utility	Weight
1	80	84
2	31	27
3	48	47
4	17	22
5	27	21
6	84	96
7	34	42
8	39	46
9	46	54
10	58	53
11	23	32
12	67	78

Real example

Portfolio optimization

- ▶ Items: potential assets.
- ▶ Utility: return.
- ▶ Weight: risk.
- ▶ Capacity: maximum risk.

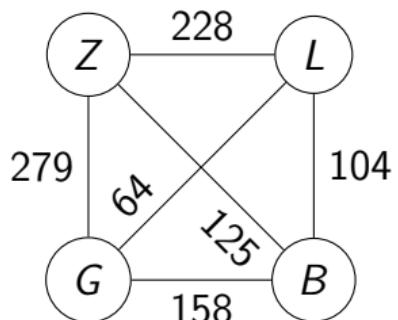
Traveling salesman problem

The problem

- ▶ Consider n cities.
- ▶ For any pair (i, j) of cities, the distance d_{ij} between them is known.
- ▶ Find the shortest possible itinerary that starts from the home town of the salesman, visit all other cities, and come back to the origin.

TSP: example

Lausanne, Geneva, Zurich, Bern

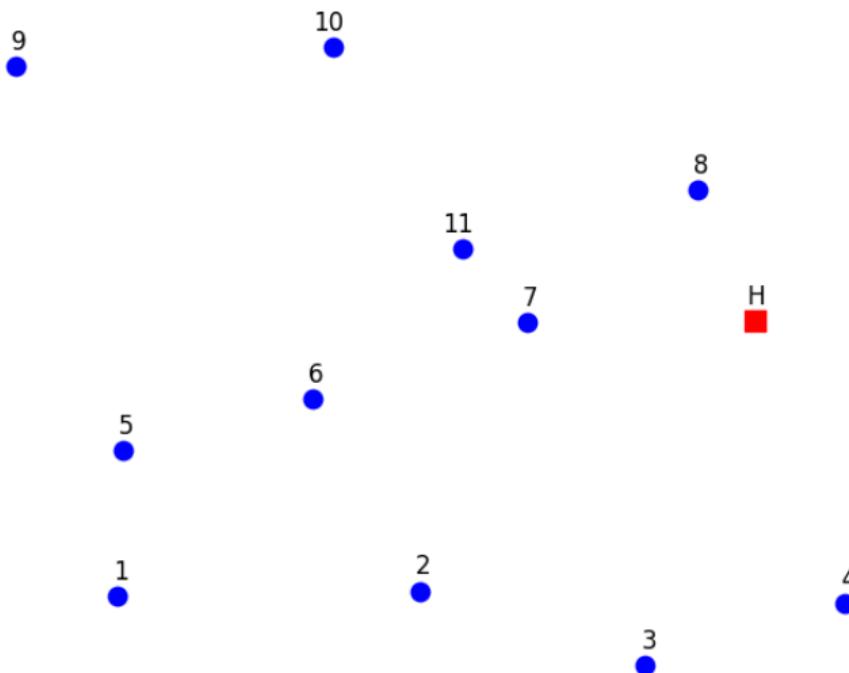


Home town: Lausanne

3 possibilities (+ their symmetric version):

- ▶ L → B → Z → G → L: 572 km
- ▶ L → B → G → Z → L: 769 km
- ▶ L → Z → B → G → L: 575 km

TSP: 12 cities (euclidean dist.)



Integer linear optimization problem

Linear optimization

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to

$$Ax = b$$

$$x \geq 0.$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

Integer Linear optimization

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to

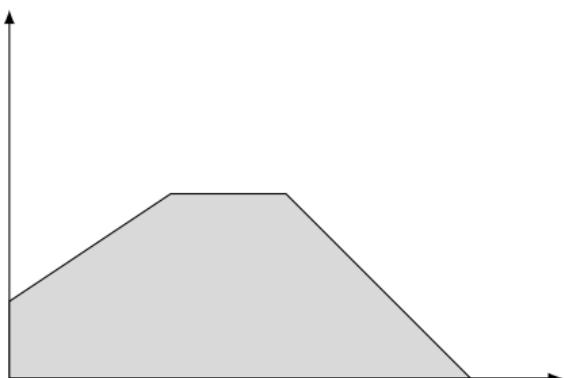
$$Ax = b$$

$$x \in \mathbb{N}.$$

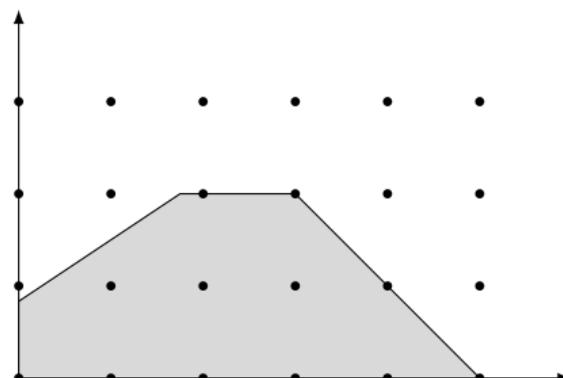
where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

Feasible set

Polyhedron



Intersection polyhedron/integer lattice



Example

$$\min_{x \in \mathbb{R}^2} -3x_1 - 13x_2$$

subject to

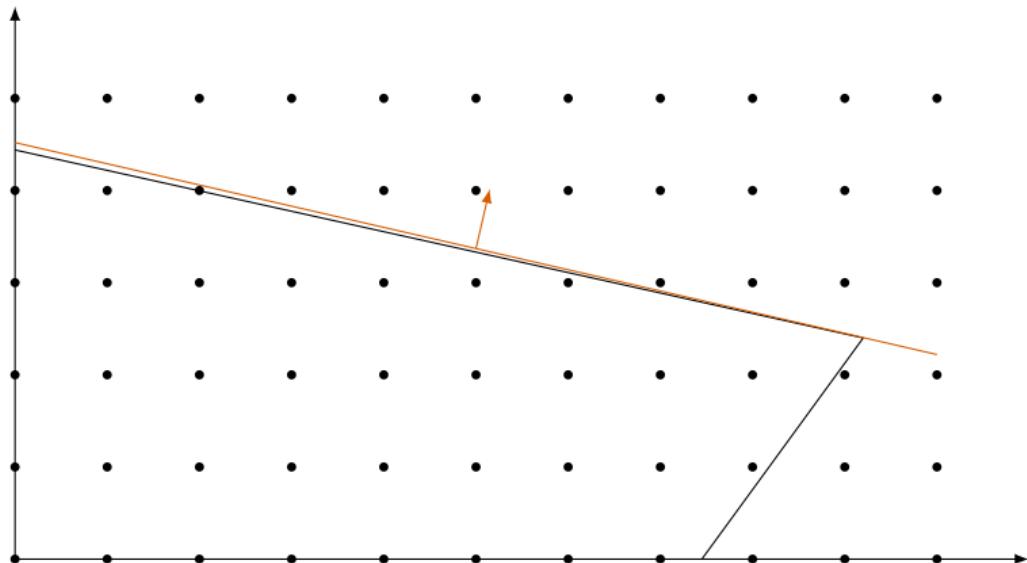
$$2x_1 + 9x_2 \leq 40$$

$$11x_1 - 8x_2 \leq 82$$

$$x_1, x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{N}$$

Example



Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

Brute force algorithm

$$\min_{u \in \mathbb{R}^n} f(u)$$

subject to

$$u \in \mathcal{U} \subseteq \mathbb{R}^n$$

Brute force algorithm

- ▶ $f^* = +\infty$
- ▶ For each $x \in \mathcal{U}$, if $f(x) < f^*$ then $x^* = x$, $f^* = f(x^*)$.

Knapsack problem

Enumeration

- ▶ Each object can be in or out, for a total of 2^n combinations.
- ▶ For each of them, we must:
 - ▶ Check that the weight is feasible.
 - ▶ If so, calculate the utility and check if it is better than f^* .

Python implementation

```
import numpy as np
import itertools
utility = np.array([80, 31, 48, 17, 27, 84, 34, 39, 46, 58, 23, 67])
weight = np.array([84, 27, 47, 22, 21, 96, 42, 46, 54, 53, 32, 78])
capacity = 300
n = len(utility)
fstar = -np.inf
xstar = None
for c in itertools.product([0, 1], repeat = n):
    w = np.inner(c, weight)
    if w <= capacity:
        u = np.inner(c, utility)
        if u > fstar:
            xstar = c
            fstar = u
```

Solution: (1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0). Weight: 300. Utility: 300.

Knapsack problem

Computational time

- ▶ About $2n$ floating point operations per combination.
- ▶ Assume a 1 Teraflops processor: 10^{12} floating point operations per second.

Knapsack problem

Computational time

- ▶ If $n = 34$, about 1 second to solve.
- ▶ If $n = 40$, about 1 minute.
- ▶ If $n = 45$, about 1 hour.
- ▶ If $n = 50$, about 1 day.
- ▶ If $n = 58$, about 1 year.
- ▶ If $n = 69$, about 2583 years, more than the Christian Era.
- ▶ If $n = 78$, about 1,500,000 years, time elapsed since Homo Erectus appeared on earth.
- ▶ If $n = 91$, about 10^{10} years, roughly the age of the universe.

Traveling salesman problem

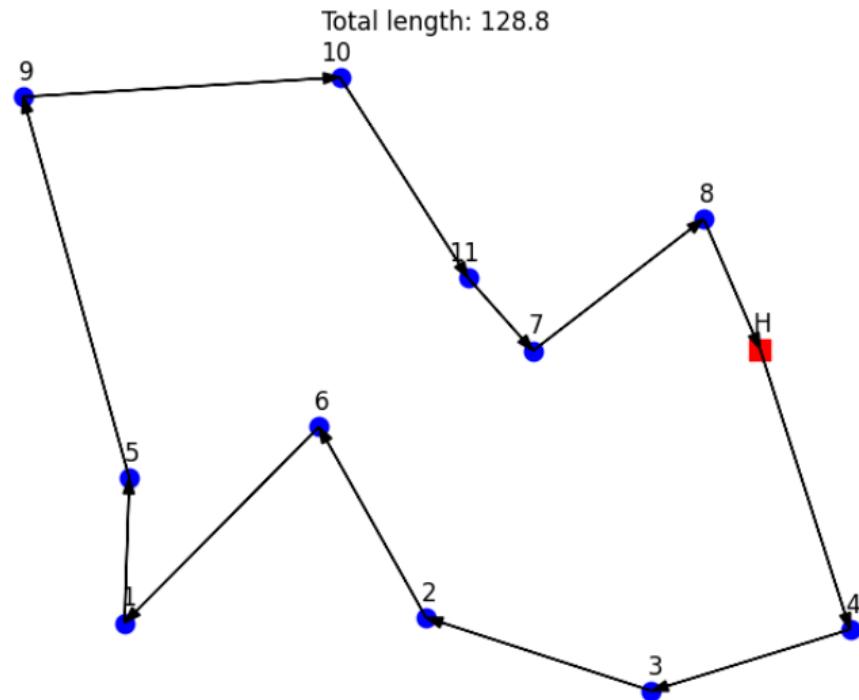
Python code

```
fstar = np.inf
xstar = None
for t in itertools.permutations(names[1:]):
    tour = ['0']+list(t)
    tl = tsp.tourLength(tour)
    if tl < fstar:
        xstar = tour
        fstar = tl
```

TSP with 12 cities

- ▶ $11! = 39'916'800$ permutations.
- ▶ Running time: about 5 minutes.
- ▶ Solution: H-4-3-2-6-1-5-9-10-11-7-8
- ▶ Tour length: 128.762

Optimal solution



Integer optimization

$$\min_{x \in \mathbb{R}^2} -3x_1 - 13x_2$$

subject to

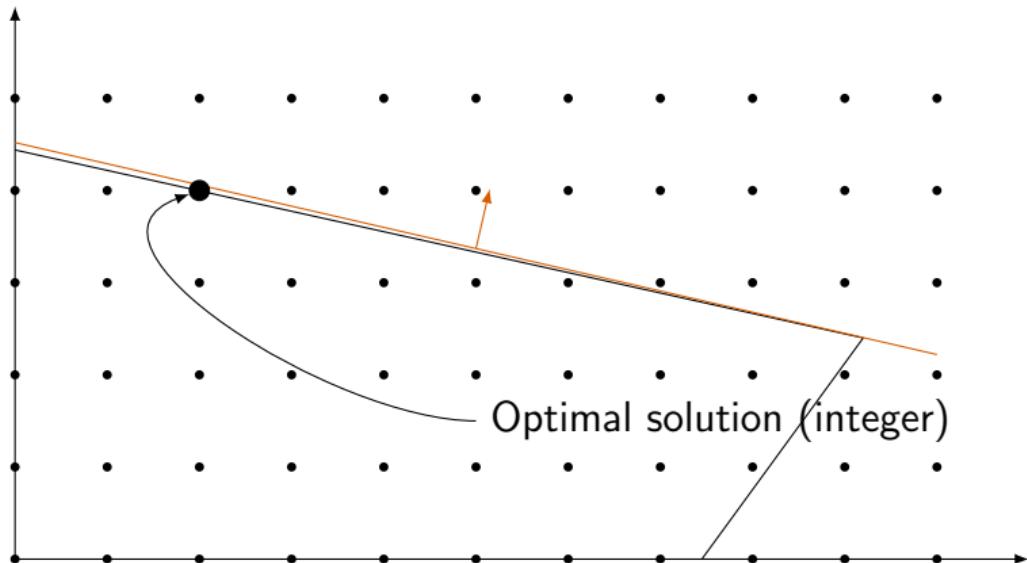
$$2x_1 + 9x_2 \leq 40$$

$$11x_1 - 8x_2 \leq 82$$

$$x_1, x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{N}$$

Feasible set: 36 solutions



Brute force algorithm

Comments

- ▶ Very simple to implement.
- ▶ Works only for small instances.
- ▶ Curse of dimensionality.
- ▶ Running time increases exponentially with the size of the problem.
- ▶ Not a reasonable option.

Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

Greedy heuristics

Principles

- ▶ Step by step construction of a feasible solution.
- ▶ At each step, a local optimization is performed.
- ▶ Decisions taken at previous steps are definitive.

Properties

- ▶ Easy to implement.
- ▶ Short computational time.
- ▶ May generate poor solutions.
- ▶ Used to generate initial solutions.

The knapsack problem

Greedy heuristic

- ▶ Sort the items by decreasing order of u_i/w_i .
- ▶ For each item in this order, put it in the sack if it fits.

The knapsack problem

Item	Utility	Weight	Ratio
1	80	84	0.952
2	31	27	1.148
3	48	47	1.021
4	17	22	0.773
5	27	21	1.286
6	84	96	0.875
7	34	42	0.810
8	39	46	0.848
9	46	54	0.852
10	58	53	1.094
11	23	32	0.719
12	67	78	0.859

The knapsack problem

Item	Utility	Weight	Ratio	Order	Remaining capacity
1	80	84	0.952	5	68
2	31	27	1.148	2	252
3	48	47	1.021	4	152
4	17	22	0.773		
5	27	21	1.286	1	279
6	84	96	0.875	6	-28
7	34	42	0.810		
8	39	46	0.848		
9	46	54	0.852		
10	58	53	1.094	3	199
11	23	32	0.719		
12	67	78	0.859		

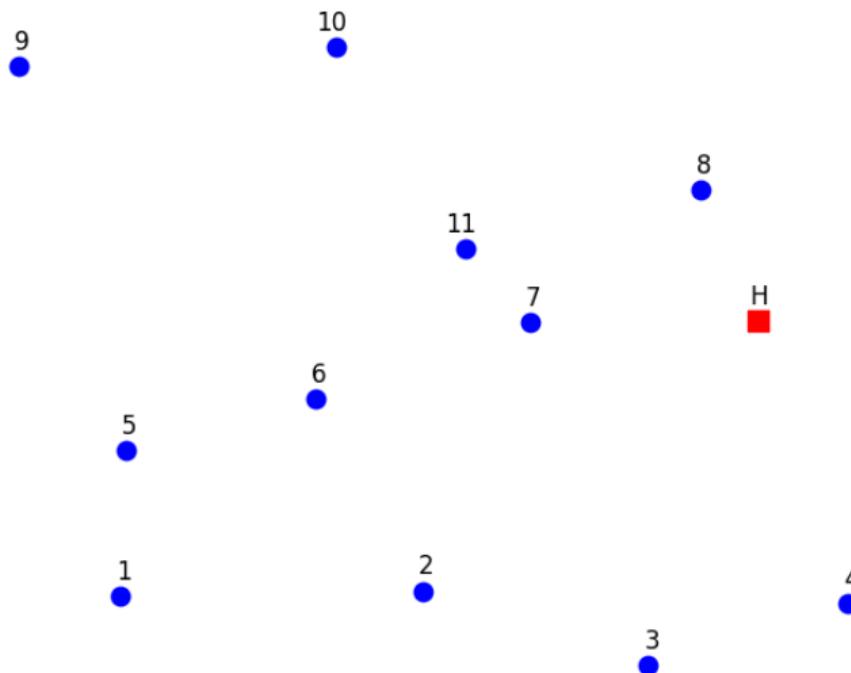
Utility: 244 (Opt: 300). Weight: 232.

The traveling salesman problem

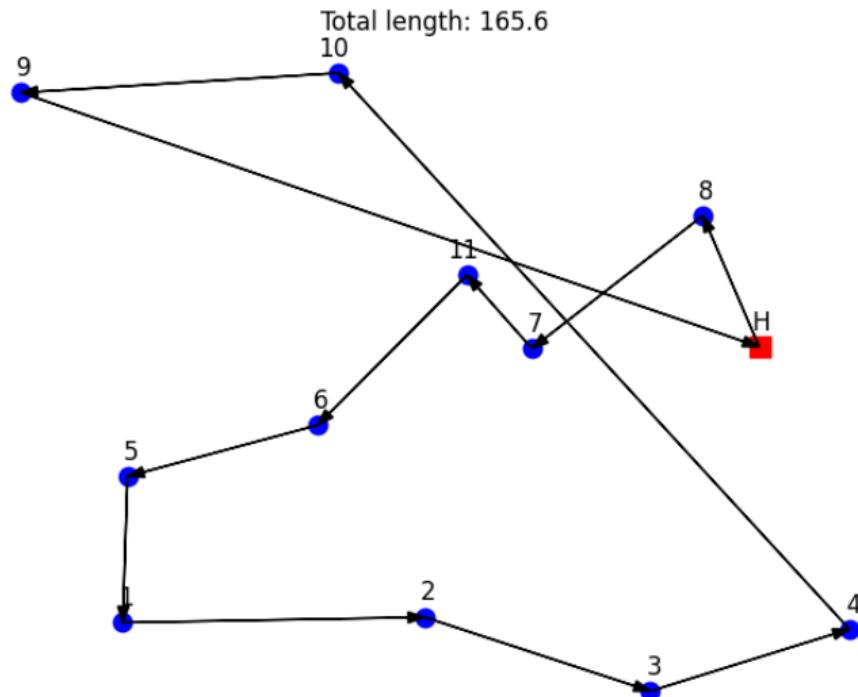
Greedy heuristic

- ▶ Start from home.
- ▶ At each step, select the closest city as the next one.

TSP: 12 cities



TSP: 12 cities



TSP: 12 cities

Greedy solution

- ▶ Easy to generate.
- ▶ No combinatorial complexity.
- ▶ Not necessarily good.
- ▶ Length: 165.6.
- ▶ Optimal tour: 128.762.

Integer optimization

Intuitive approach

- ▶ Solve the continuous relaxation.
- ▶ Round the solution.

Example

$$\min_{x \in \mathbb{R}^2} -3x_1 - 13x_2$$

subject to

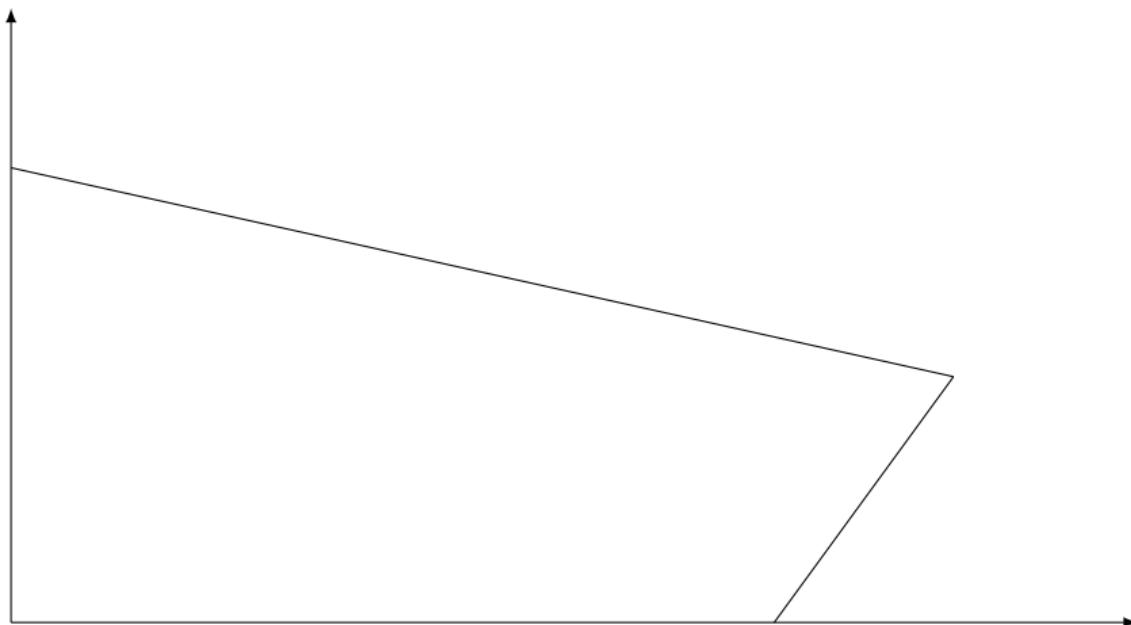
$$2x_1 + 9x_2 \leq 40$$

$$11x_1 - 8x_2 \leq 82$$

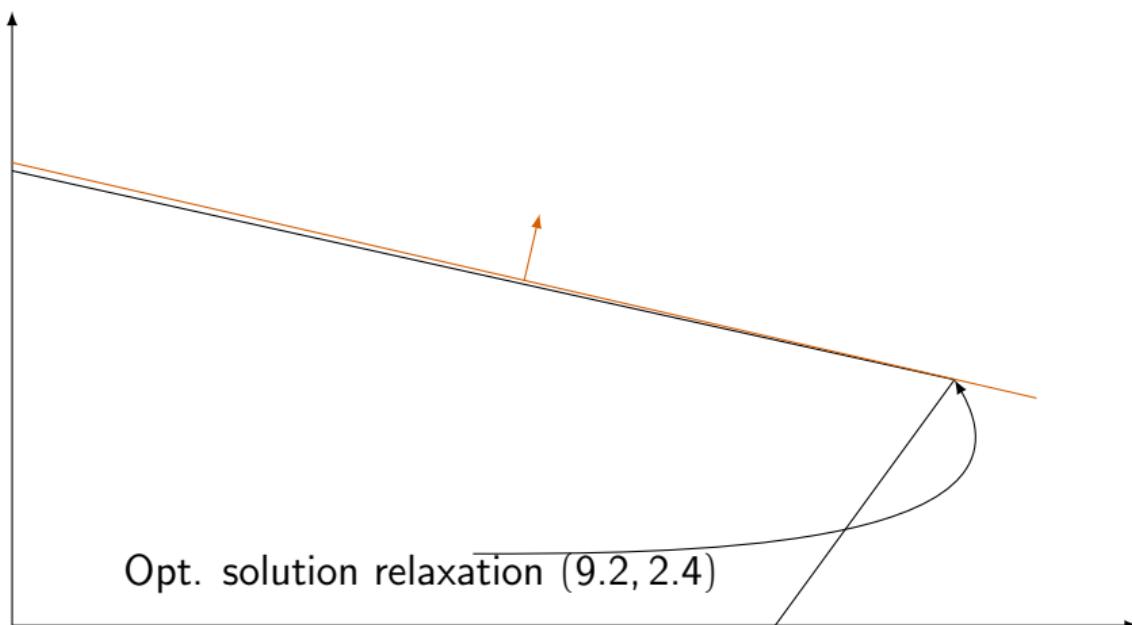
$$x_1, x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{N}$$

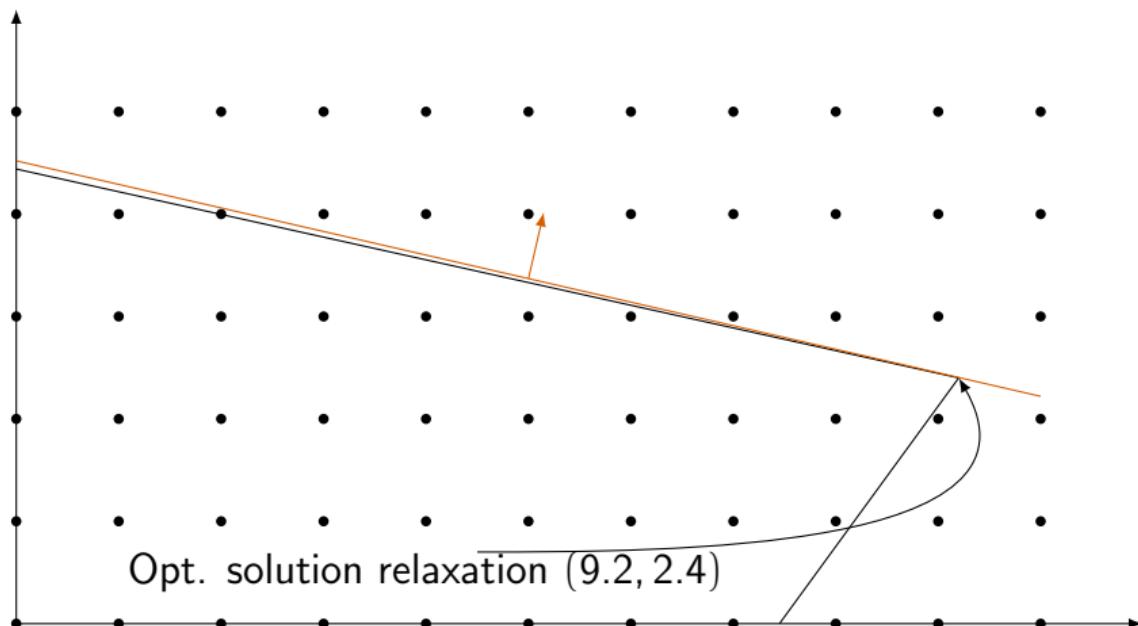
Relaxation: feasible set



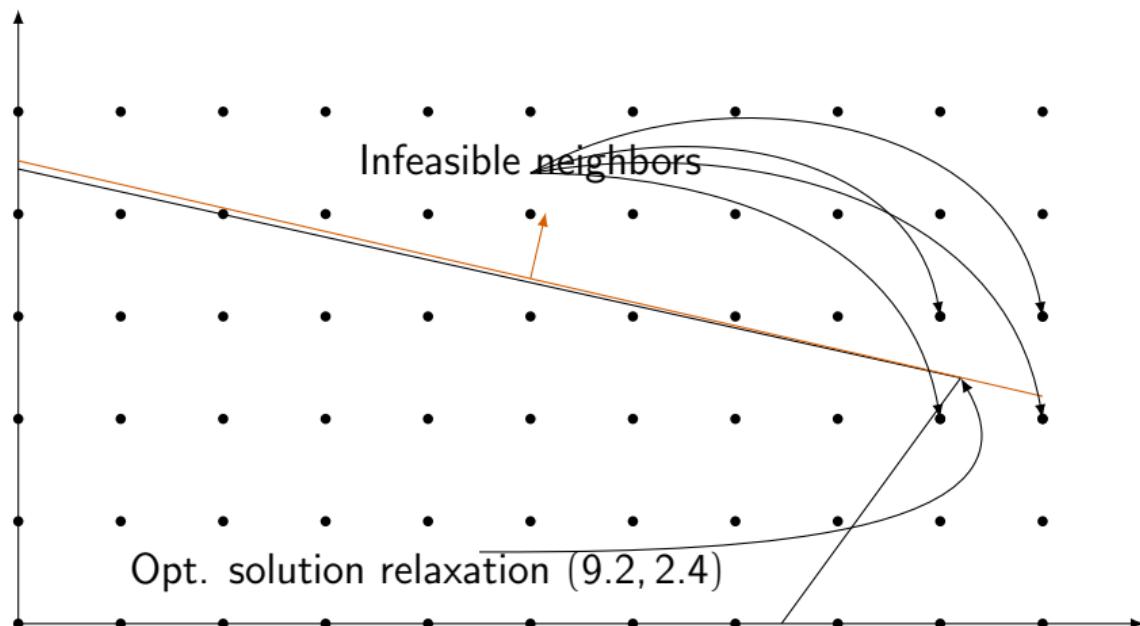
Optimal solution of the relaxation



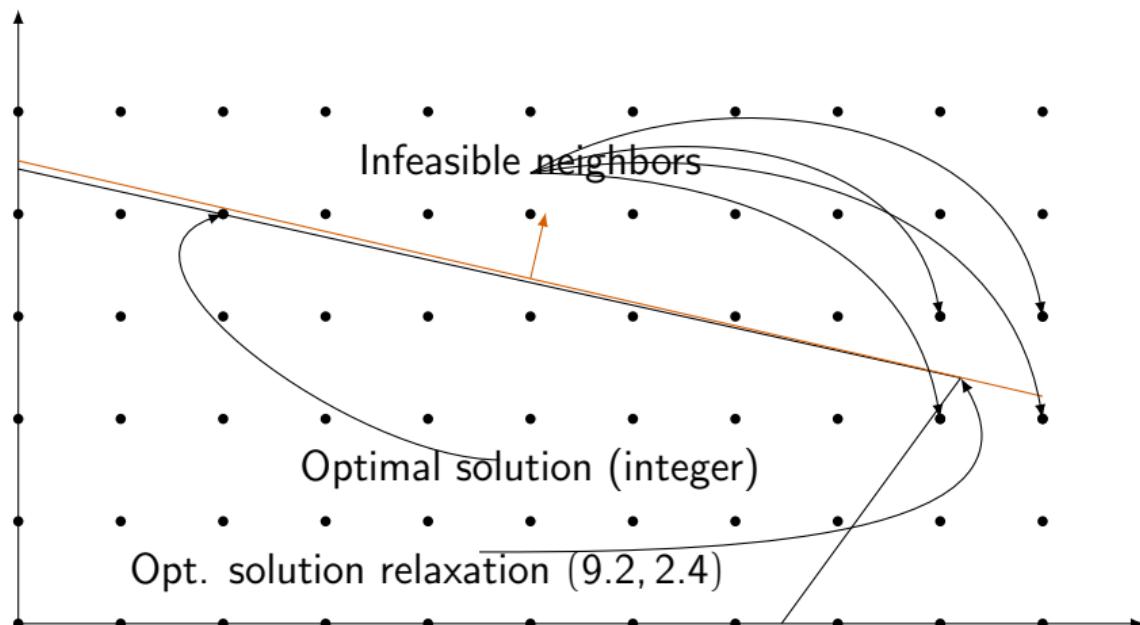
Integrality constraints



Infeasible neighbors



Solution of the integer optimization problem



Issues

- ▶ There are 2^n different ways to round. Which one to choose?
- ▶ Rounding may generate an infeasible solution.
- ▶ The rounded solution may be far from the optimal solution.

Greedy heuristics

Comments

- ▶ Fast.
- ▶ Easy to implement.
- ▶ Useful to find an initial solution.
- ▶ Feasibility is usually the main issue (rounding issues with ILP).

Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

Heuristics: general framework

Exploration

Neighborhood

Intensification

Local search

Diversification

Escape from local minima

Optimization vs sampling: a useful analogy

Sampling (MCMC)

- ▶ Goal: explore the state space according to a target distribution.
- ▶ Moves are accepted to preserve the stationary distribution.

Optimization (heuristics)

- ▶ Goal: explore the same type of space to find low values of $f(x)$.
- ▶ Moves are designed to favor improvement, with mechanisms to escape local minima.

Key message

Both rely on neighborhood moves; the difference is whether we aim to sample or to optimize.

Neighborhood

Concept

- ▶ The feasible set is too large.
- ▶ We need to explore it in a smart way.
- ▶ Idea: at each iteration, restrict the optimization problem to a small feasible subset that can be enumerated.
- ▶ The small subset is called a neighborhood.
- ▶ Ideally, all these solutions must be feasible.
- ▶ Neighborhoods can be constructed incrementally during the algorithms.

Neighborhood types

Fundamental neighborhood structure

- ▶ Obtained from simple modifications of the current solution.
- ▶ These modifications must be designed based on the properties of the problem.

Shuffled neighborhood structure

- ▶ Obtained from shuffling the solutions from another neighborhood.
- ▶ The shuffling can be deterministic or random.

Feasible neighborhood structure

- ▶ Useful when a potential neighborhood structure contains infeasible solutions.
- ▶ Feasibility checks can also be done while generating the neighbors.

Neighborhood types

Truncated neighborhood structure

- ▶ Useful when a potential neighborhood structure is too large.
- ▶ The size of the neighborhood is controlled.

Combined neighborhood structure

- ▶ Union, intersection, or any combination of other structures.
- ▶ Use building blocks to construct more complex structures.

Neighborhoods

Important properties

- ▶ Neighborhood structures are used to explore the solution space.
- ▶ Algorithms will move from x to an element of $V(x)$.
- ▶ They can be seen as “vehicles”.
- ▶ Symmetry: it is good practice to use symmetric neighborhoods:

$$y \in V(x) \iff x \in V(y).$$

- ▶ Reachability: a neighborhood V must be rich enough to reach any feasible solution, from another feasible solution. For each $x_1, x_K \in \mathcal{U}$, there exists a sequence $x_2, \dots, x_{K-1} \in \mathcal{U}$ such that

$$x_{k+1} \in V(x_k), \quad k = 1, \dots, K-1.$$

- ▶ Analogy with Markov chains: irreducibility.

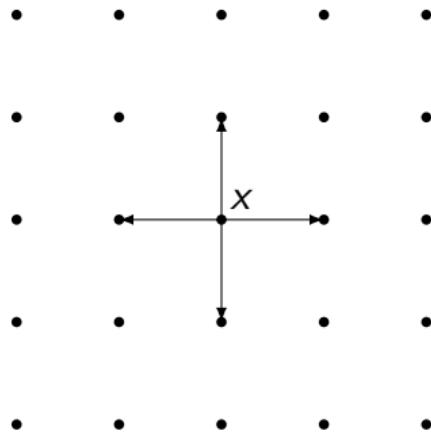
What makes a good neighborhood?

Design checklist

- ▶ **Reachability:** can we reach all feasible solutions (in principle)?
- ▶ **Feasibility handling:** generate only feasible neighbors or repair/filter infeasible ones.
- ▶ **Cost of evaluation:** neighbors should be cheap to evaluate (use incremental updates when possible).
- ▶ **Balance:** too small \Rightarrow stuck; too large \Rightarrow expensive enumeration.
- ▶ **Symmetry (often useful):**

$$y \in V(x) \iff x \in V(y).$$

Integer optimization



Integer optimization

- ▶ Consider the current iterate $x \in \mathbb{Z}^n$.
- ▶ For each $k = 1, \dots, n$, define 2 neighbors by increasing and decreasing the value of x_k by one unit.
- ▶ The neighbors y^{k+} and y^{k-} are defined as

$$y_i^{k+} = y_i^{k-} = x_i, \forall i \neq k, \quad y_k^{k+} = x_k + 1, \quad y_k^{k-} = x_k - 1.$$

- ▶ Example

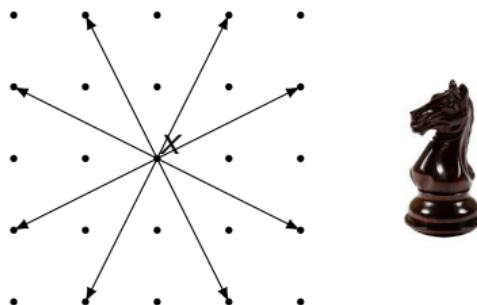
$$x = (3, 5, 2, 8) \quad y^{2+} = (3, 6, 2, 8) \quad y^{2-} = (3, 4, 2, 8)$$

- ▶ Size of the neighborhood: $2n$.
- ▶ Feasibility should also be enforced.
- ▶ If n is large, truncation may be useful.
- ▶ The order is arbitrary, but must be specified.
- ▶ Shuffling may be useful.

Integer optimization

Creativity

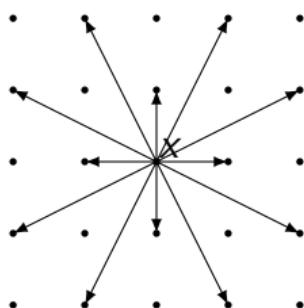
- ▶ The concept of neighborhood is fairly general.
- ▶ It must be defined based on the structure of the problem.
- ▶ Creativity is required here.



Integer optimization

Combinations

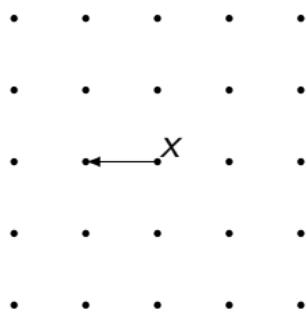
- ▶ Combining neighborhoods is easy.
- ▶ Trade-off between flexibility and complexity.



Integer optimization

Properties

- ▶ Verify the properties.
- ▶ Symmetry and reachability.



The knapsack problem

Fundamental neighborhood

- ▶ Current solution: for each item i , $x_i = 0$ or $x_i = 1$.
- ▶ Neighbor solution: select an item j , and change the decision: $x_j \leftarrow 1 - x_j$.
- ▶ Warning: check feasibility.
- ▶ Generalization: neighborhood of size k : select k items, and change the decision for them (checking feasibility).
- ▶ Order: based on the utility/weight ratio, for instance.

The knapsack problem

Truncated neighborhood

- ▶ A neighborhood of size k modifies k variables.
- ▶ Number of neighbors:

$$\frac{n!}{k!(n-k)!}$$

- ▶ $k = 1$: n neighbors.
- ▶ $k = n$: 1 neighbor.
- ▶ Useful to truncate to M .
- ▶ Size of the neighborhood:

$$\min\left(\frac{n!}{k!(n-k)!}, M\right).$$

Python code

```
def neighborhood(sack, size = 1, random = True, truncated = None):
    n = len(sack)
    combinations = np.array(list(itertools.combinations(range(n), size)))
    if random:
        np.random.shuffle(combinations)
    if truncated is not None:
        combinations = combinations[:truncated]
    theNeighborhood = []
    for c in combinations:
        s = np.array(sack)
        s[c] = 1 - sack[c]
        theNeighborhood.append(s)
    return theNeighborhood
```

Traveling salesman problem

2-OPT

- ▶ Select two cities.
- ▶ Swap their position in the tour.
- ▶ Visit all intermediate cities in reverse order.

Example

Current tour:

A-B-C-D-E-F-G-H-A

Exchange C and G to obtain

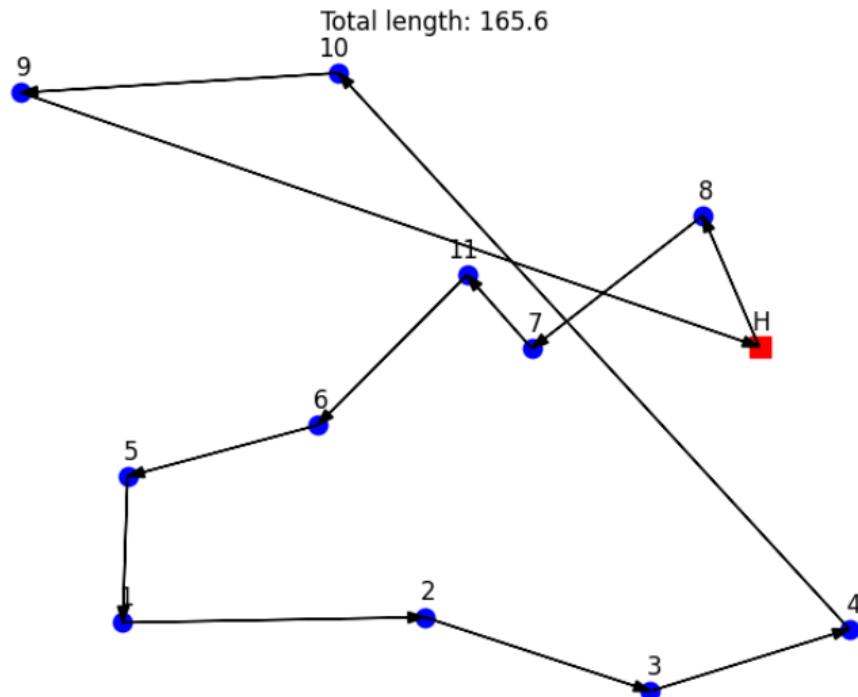
A-B-**G**-F-E-D-**C**-H-A.

Traveling salesman problem

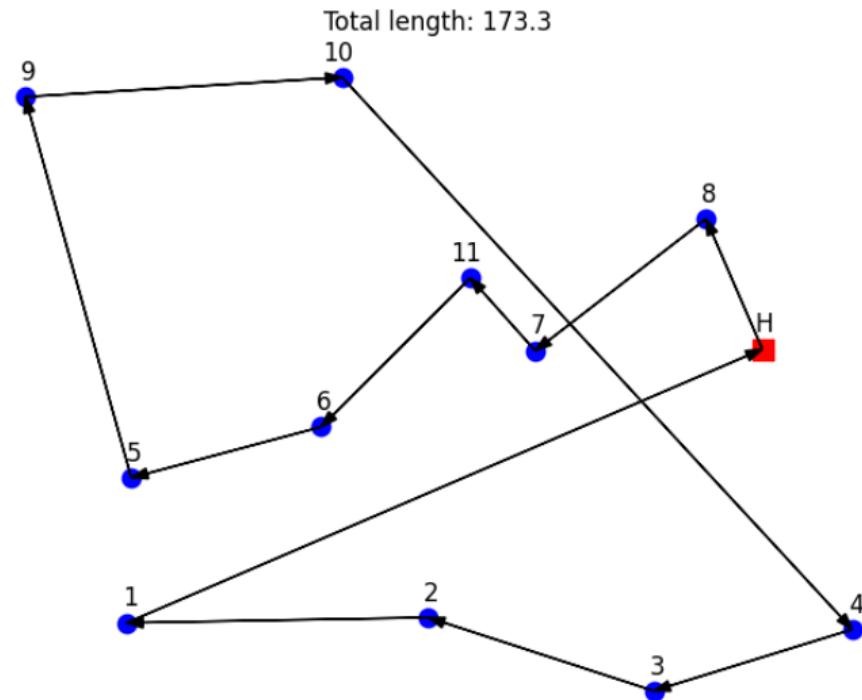
Example: 2-OPT(1,9)

- ▶ Try to improve the solution using 2-OPT swapping 1 and 9.
- ▶ Before: H-8-7-11-6-5-1-2-3-4-10-9-H (length: 165.6)
- ▶ After : H-8-7-11-6-5-9-10-4-3-2-1-H (length: 173.3)
- ▶ No improvement.

Neighborhood: 2-OPT(1,9) before



Neighborhood: 2-OPT(1,9) after



Exploration

Comments

- ▶ Design of “vehicles” to explore the solution space.
- ▶ Fundamental neighborhoods exploit the structure of the problem.
- ▶ Various operations allow to modify and combine neighborhoods.
- ▶ Trade-off between flexibility and complexity.
- ▶ The neighborhood must be sufficiently large to increase the chances of improvement, and sufficiently small to avoid a lengthy enumeration.
- ▶ Example of a neighborhood too small: one neighbor at the west.
- ▶ Example of a neighborhood too large: each feasible point is in the neighborhood.

Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

Local search: version one

- ▶ Consider the combinatorial optimization problem

$$\min f(x)$$

subject to

$$x \in \mathcal{U}.$$

- ▶ Consider the neighborhood structure $V(x)$, where $V(x)$ is the set of feasible neighbors of x .
- ▶ At each iteration k , consider the neighbors in $V(x_k)$ one at a time.
- ▶ For each $y \in V(x_k)$, if $f(y) < f(x_k)$, then $x_{k+1} = y$ and proceed to the next iteration.
- ▶ If $f(y) \geq f(x_k)$, $\forall y \in V(x_k)$, x_k is a local minimum. Stop.

Local search: version two

- ▶ Consider the combinatorial optimization problem

$$\min f(x)$$

subject to

$$x \in \mathcal{U}.$$

- ▶ Consider the neighborhood structure $V(x)$ (set of neighbors of x).
- ▶ At iteration k , select a best neighbor

$$y \in \arg \min_{v \in V(x_k)} f(v).$$

- ▶ If $f(y) \geq f(x_k)$, then x_k is a local minimum. Stop.
- ▶ Otherwise, set $x_{k+1} = y$ and continue.

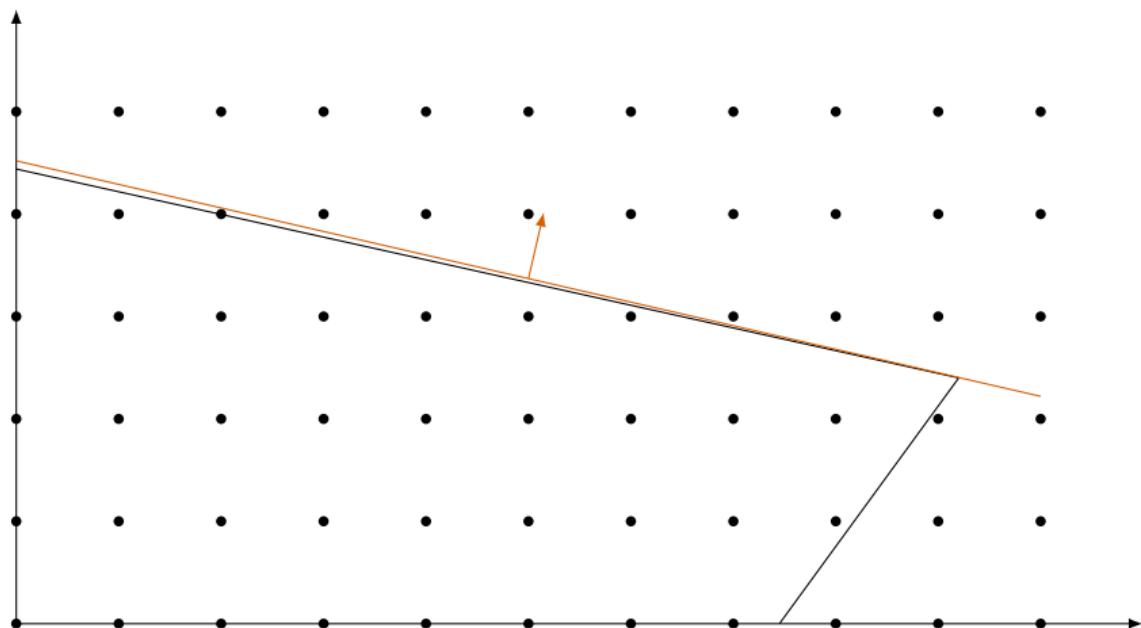
Local search: example

$$\min_{x \in \mathbb{R}^2} -3x_1 - 13x_2$$

subject to

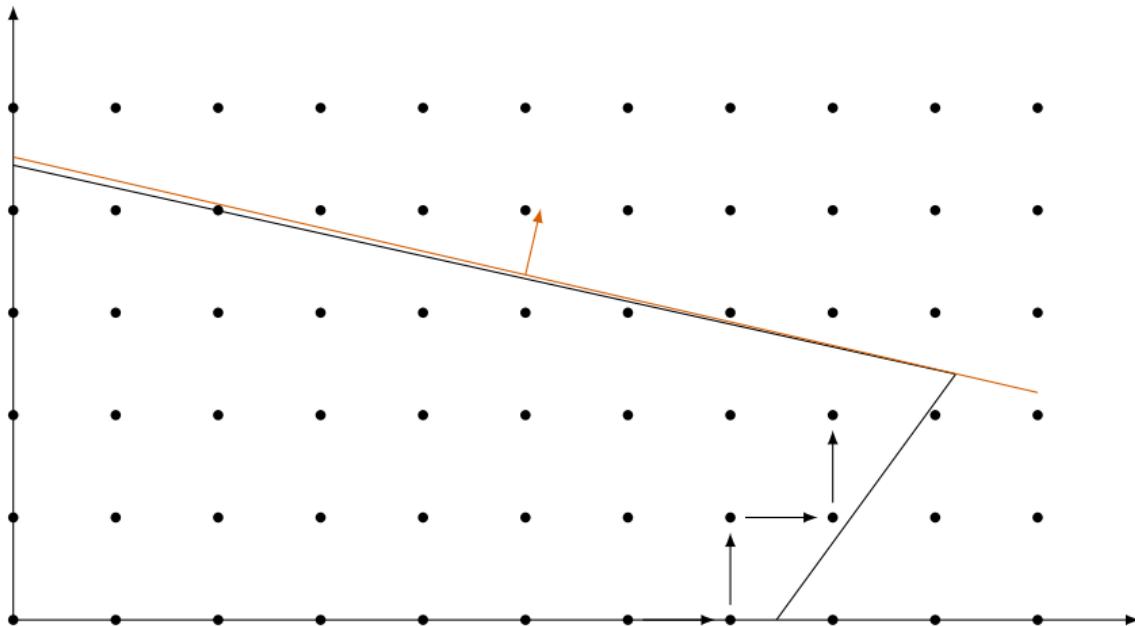
$$\begin{aligned} 2x_1 + 9x_2 &\leq 40 \\ 11x_1 - 8x_2 &\leq 82 \\ x_1, x_2 &\in \mathbb{N} \end{aligned}$$

Local search: example



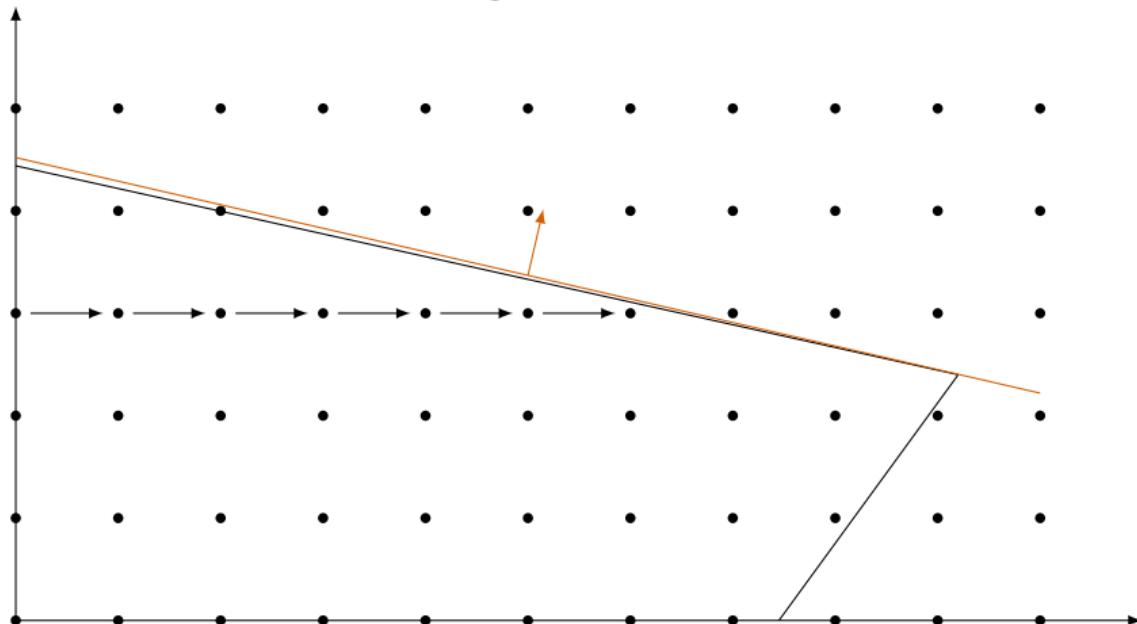
Local search: example

$x_0 = (6, 0)$ - Neighborhood: E - N - W - S



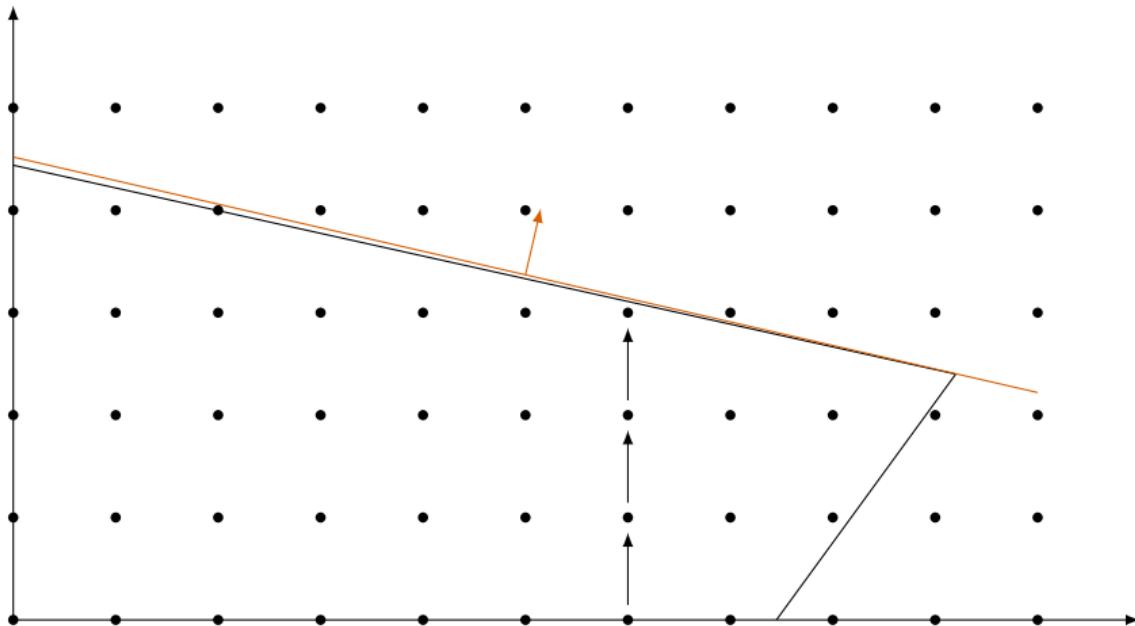
Local search: example

$x_0 = (0, 3)$ - Neighborhood: E - N - W - S



Local search: example

$x_0 = (6, 0)$ - Neighborhood : N - W - S - E



The knapsack problem

$$\max_{x \in \{0,1\}^n} u^T x$$

subject to

$$w^T x \leq W.$$

The knapsack problem

```
def localSearch(u, w, capacity, initSolution, neighborhood):
    x = initSolution
    ux = np.inner(u, x)
    wx = np.inner(w, x)
    if wx > capacity:
        raise Exception(f'Infeasible weight {wx} > {capacity}')
    localOptimum = False
    while not localOptimum:
        neighbors = neighborhood(x)
        localOptimum = True
        for y in neighbors:
            wy = np.inner(w, y)
            if wy <= capacity:
                uy = np.inner(u, y)
                if uy > ux:
                    localOptimum = False
                    x = y
                    ux = uy
                    wx = wy
```

The knapsack problem

```
def neighborhood1(sack):
    return neighborhood(sack, size = 1, random = False, truncated = None)
firstSack = np.array([0]*n)

localSearch(utility, weight, capacity, firstSack, neighborhood1)
First sack: [0 0 0 0 0 0 0 0 0 0] U=0 W=0
New sack  : [1 0 0 0 0 0 0 0 0 0] U=80 W=84
New sack  : [0 0 0 0 0 1 0 0 0 0] U=84 W=96
New sack  : [1 0 0 0 0 1 0 0 0 0] U=164 W=180
New sack  : [1 1 0 0 0 1 0 0 0 0] U=195 W=207
New sack  : [1 0 1 0 0 1 0 0 0 0] U=212 W=227
New sack  : [1 0 0 0 0 1 0 0 0 1] U=222 W=233
New sack  : [1 0 0 0 0 1 0 0 0 0] U=231 W=258
New sack  : [1 1 0 0 0 1 0 0 0 0] U=262 W=285
New sack  : [1 0 0 0 0 1 1 0 0 0] U=265 W=300
```

The knapsack problem

```
def neighborhood2(sack):
    return neighborhood(sack, size = 3, random = False, truncated = None)

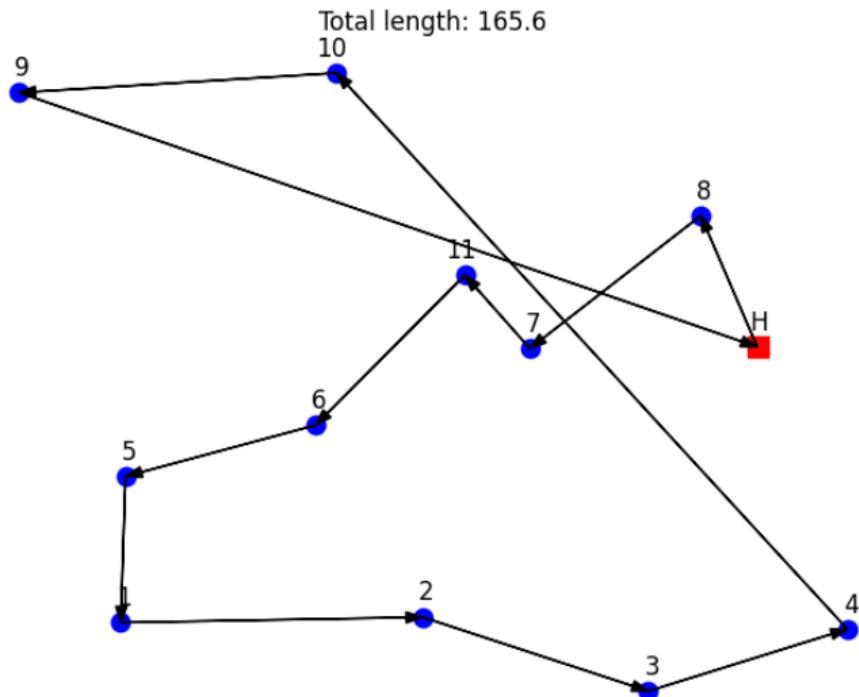
firstSack = np.array([0]*n)
localSearch(utility, weight, capacity, firstSack, neighborhood2)
First sack: [0 0 0 0 0 0 0 0 0 0 0] U=0 W=0
New sack  : [1 1 1 0 0 0 0 0 0 0 0] U=159 W=158
New sack  : [1 1 0 0 0 1 0 0 0 0 0] U=195 W=207
New sack  : [1 0 1 0 0 1 0 0 0 0 0] U=212 W=227
New sack  : [1 0 0 0 0 1 0 0 0 1 0] U=222 W=233
New sack  : [1 0 0 0 0 1 0 0 0 0 1] U=231 W=258
New sack  : [0 1 0 0 0 1 0 0 0 1 0] U=240 W=254
New sack  : [0 0 1 0 0 1 0 0 1 0 0] U=245 W=275
New sack  : [0 0 1 0 0 1 0 0 0 1 0] U=257 W=274
New sack  : [1 0 1 0 0 1 0 0 1 0 0] U=258 W=281
New sack  : [1 0 1 0 0 1 0 0 0 1 0] U=270 W=280
New sack  : [0 0 1 1 0 1 0 0 0 1 0] U=274 W=296
New sack  : [0 0 1 0 1 1 0 0 0 1 0] U=284 W=295
New sack  : [1 0 0 0 1 1 0 1 0 1 0] U=288 W=300
```

Traveling salesman problem

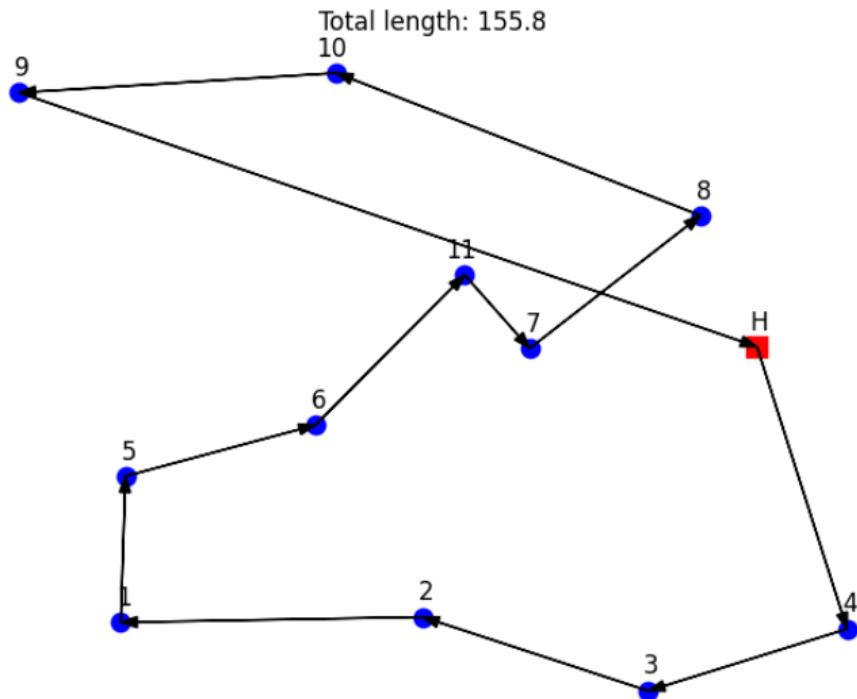
Procedure

- ▶ Start with the outcome of the greedy algorithm.
- ▶ Use the 2-OPT neighborhood.
- ▶ Use version two of the local search.

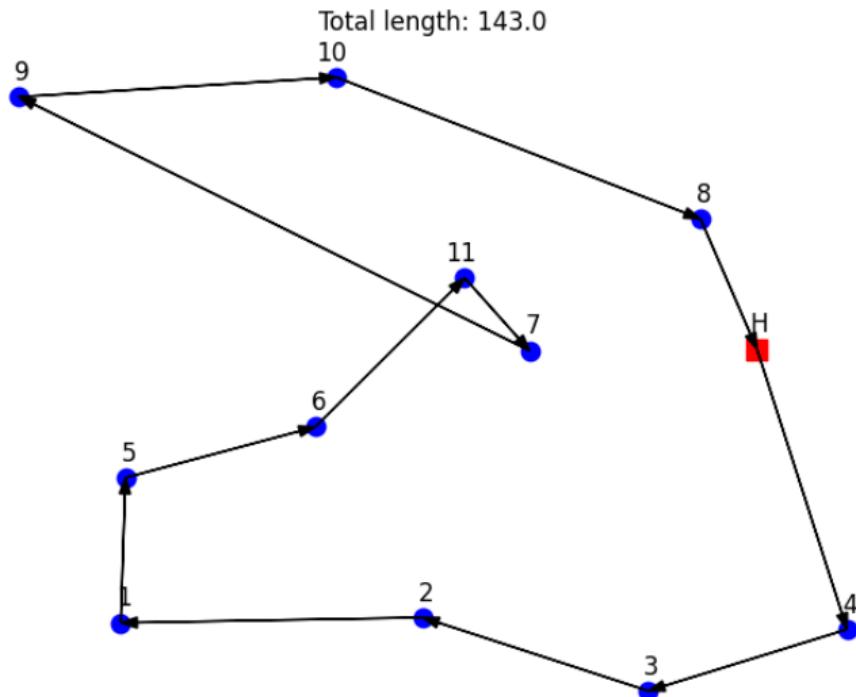
Current tour



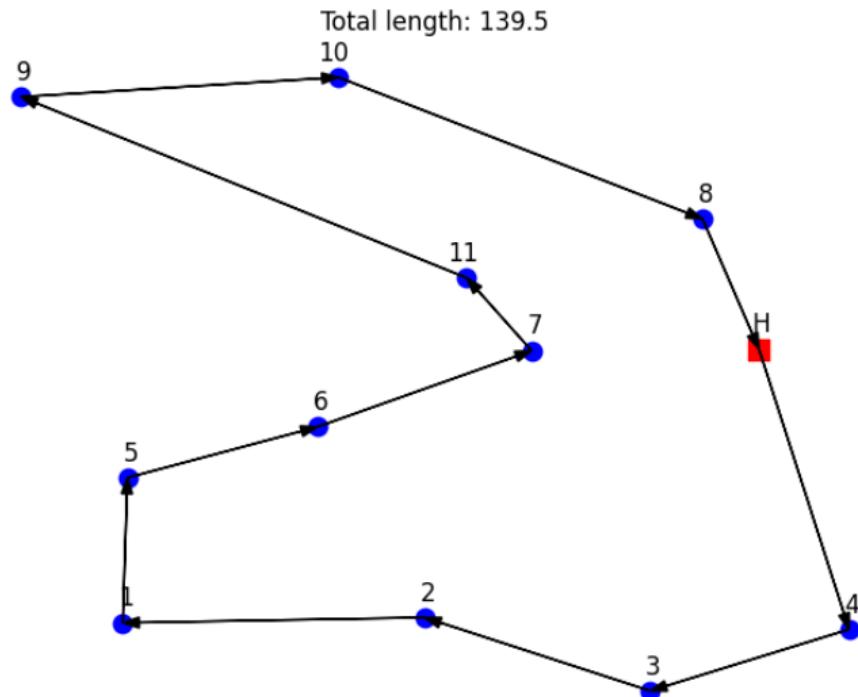
Best neighbor: 2-OPT(8,4)



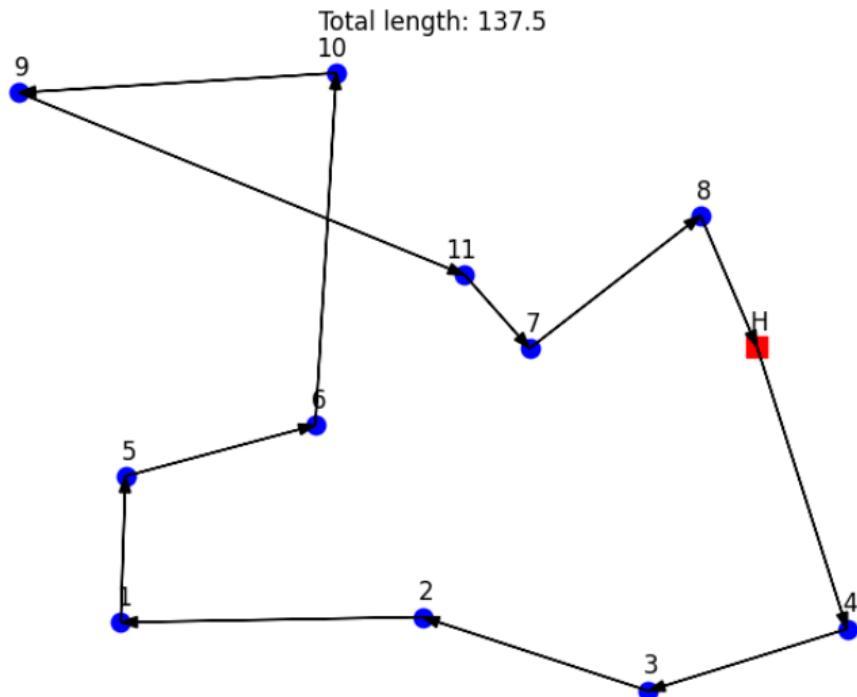
Best neighbor: 2-OPT(8,9)



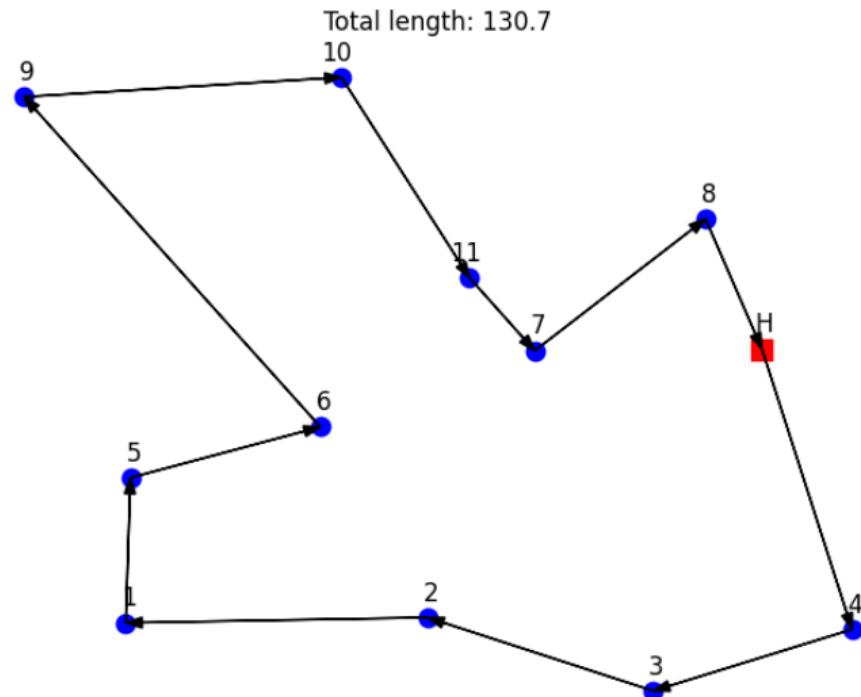
Best neighbor: 2-OPT(11,7)



Best neighbor: 2-OPT(7,10)



Best neighbor: 2-OPT(10,9)



Comments

- ▶ The algorithm stops at a local minimum, that is a solution better than all its neighbors.
- ▶ The outcome depends on the starting point and the structure of the neighborhood.
- ▶ Several variants are possible.

Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

Changing the starting point

Idea

- ▶ Launch the local search from several starting points.
- ▶ Select the best local optimum.

Issues

- ▶ Feasibility.
- ▶ Same local optimum may be generated many times.
- ▶ Shooting in the dark.

Variable Neighborhood Search

- ▶ aka VNS
- ▶ Idea: consider several neighborhood structures.
- ▶ When a local optimum has been found for a given neighborhood structure, continue with another structure.

VNS: method

Input

- ▶ V_1, V_2, \dots, V_K neighborhood structures.
- ▶ Initial solution x_0 .

Initialization

- ▶ $x_c \leftarrow x_0$
- ▶ $k \leftarrow 1$

Iterations

Repeat

- ▶ Apply local search from x_c using neighborhood V_k

$$x^+ \leftarrow LS(x_c, V_k)$$

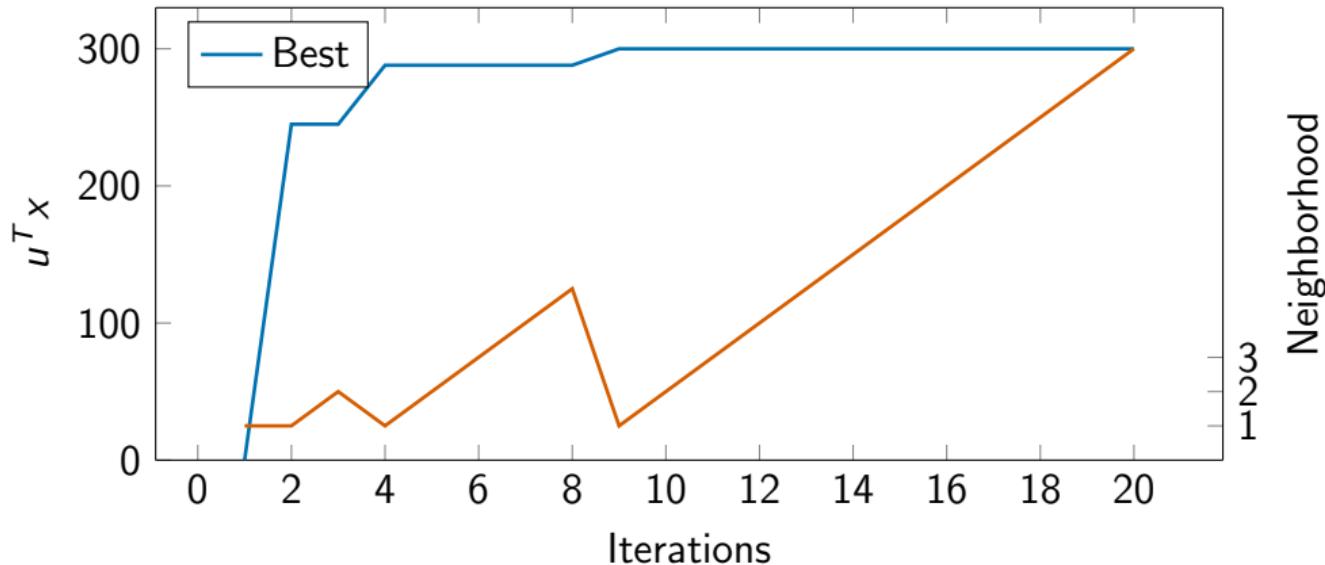
- ▶ If $f(x^+) < f(x_c)$, then $x_c \leftarrow x^+$, $k \leftarrow 1$.
- ▶ Otherwise, $k \leftarrow k + 1$.

Until $k = K$.

VNS: example for the knapsack problem

- ▶ Neighborhood of size k : modify k variables.
- ▶ Local search: current iterate: x_c
 - ▶ randomly select a neighbor x^+
 - ▶ if $w^T x^+ \leq W$ and $u^T x^+ > u^T x_c$, then $x_c \leftarrow x^+$

VNS: example for the knapsack problem



Simulated annealing

Analogy with metallurgy

- ▶ Heating a metal and then cooling it down slowly improves its properties.
- ▶ The atoms take a more solid configuration.

In optimization:

- ▶ Local search can both decrease and increase the objective function.
- ▶ At “high temperature”, it is common to increase.
- ▶ At “low temperature”, increasing happens rarely.
- ▶ Simulated annealing: slow cooling = slow reduction of the probability to increase.

Simulated annealing

Modify the local search.

For the sake of simplicity: consider a neighborhood structure containing only feasible solutions.

Let x_k be the current iterate

- ▶ Select $y \in V(x_k)$.
- ▶ If $f(y) \leq f(x_k)$, then $x_{k+1} = y$.
- ▶ Otherwise, $x_{k+1} = y$ with probability

$$e^{-\frac{f(y)-f(x_k)}{T}}$$

with $T > 0$.

Concretely, draw r between 0 and 1.

Accept y as next iterate if

$$e^{-\frac{f(y)-f(x_k)}{T}} > r$$

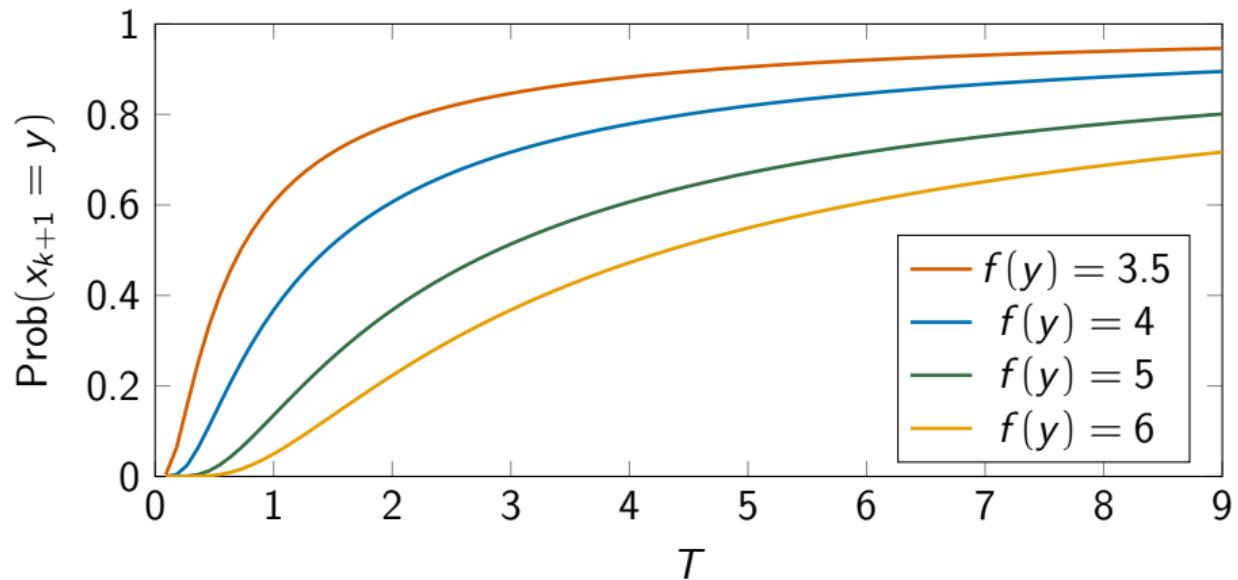
Simulated annealing

$$\text{Prob}(x_{k+1} = y) = \begin{cases} 1 & \text{if } f(y) \leq f(x_k) \\ e^{-\frac{f(y)-f(x_k)}{T}} & \text{if } f(y) > f(x_k) \end{cases}$$

- ▶ If T is high (hot temperature), high probability to increase.
- ▶ If T is low, almost only decreases.

Simulated annealing

Example : $f(x_k) = 3$



Simulated annealing

- ▶ In practice, start with high T for flexibility.
- ▶ Then, decrease T progressively.

Simulated annealing

Input ► Initial solution x_0
► Initial temperature T_0 , minimum temperature T_f
► Neighborhood structure $V(x)$
► Maximum number of iterations K

Initialize $x_c \leftarrow x_0$, $x^* \leftarrow x_0$, $T \leftarrow T_0$

Simulated annealing

Repeat $k \leftarrow 1$

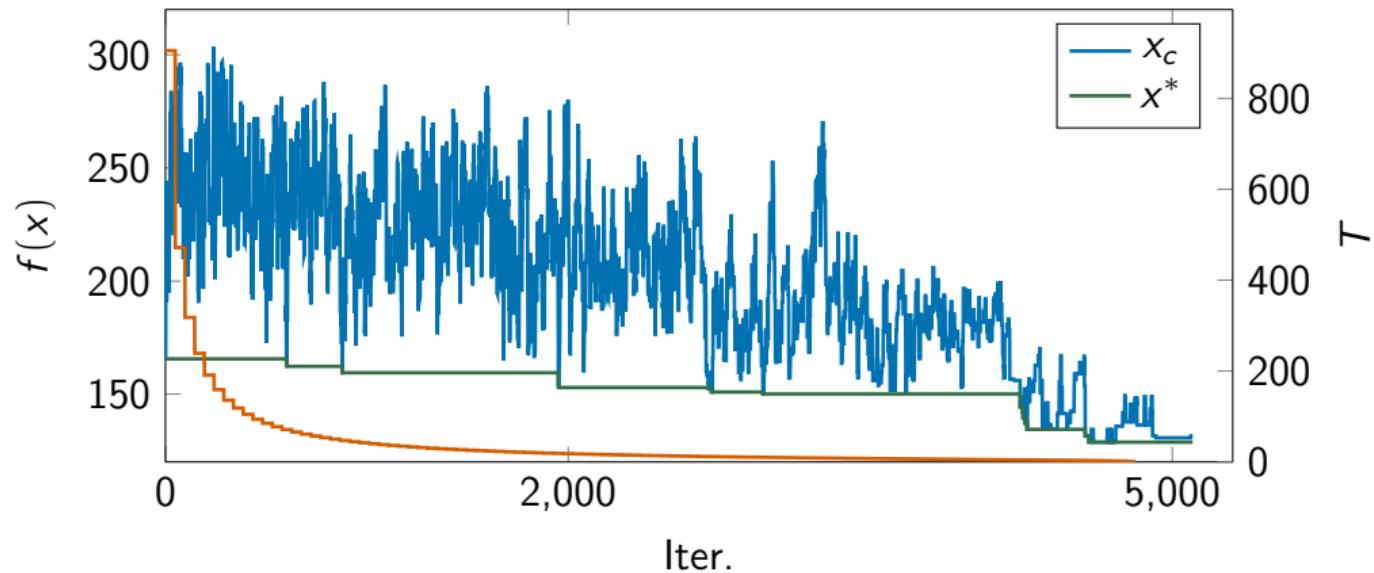
► While $k < K$

- Randomly select a neighbor $y \in V(x_c)$
- $\delta \leftarrow f(y) - f(x_c)$
- If $\delta < 0$, $x_c = y$.
- Otherwise, draw r between 0 and 1
- If $r < \exp(-\delta/T)$, then $x_c = y$
- If $f(x_c) < f(x^*)$, $x^* = x_c$.
- $k \leftarrow k + 1$

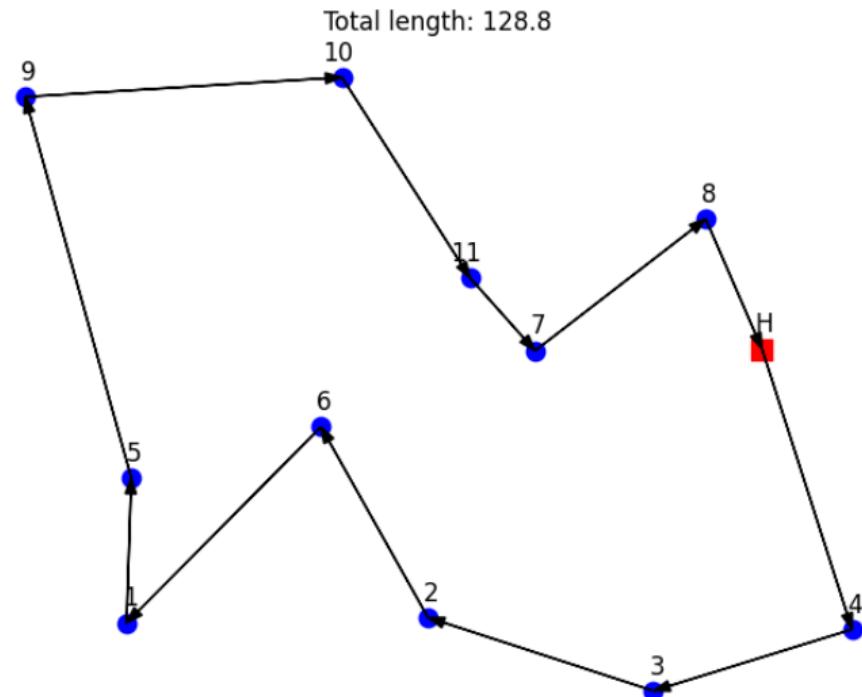
► Reduce T

Until $T \leq T_f$

Example: traveling salesman problem



Best solution found (optimal!)



Practical comments

- ▶ Parameters must be tuned.
- ▶ In particular, the reduction rate of the temperature must be specified.
 - ▶ Let δ_t be a typical increase of the objective function.
 - ▶ In the beginning, we want such an increase to be accepted with probability p_0 (e.g. $p_0 = 0.999$)
 - ▶ At the end, we want such an increase to be accepted with probability p_f (e.g. $p_f = 0.00001$)
 - ▶ We allow for M updates of the temperature. So, for $m = 0, \dots, M$,

$$T = -\frac{\delta_t}{\ln(p_0 + \frac{p_f - p_0}{M} m)}$$

Simulated annealing and MCMC

Key connection

Simulated annealing applies Metropolis–Hastings to the distribution

$$\pi_T(x) \propto \exp\left(-\frac{f(x)}{T}\right),$$

where $T > 0$ is the temperature.

Interpretation

- ▶ High T : exploration (many uphill moves accepted).
- ▶ Low T : exploitation (mostly downhill moves).
- ▶ Cooling schedule: gradually shifts from exploration to exploitation.

Takeaway

Annealing is a meta-heuristic that uses an MCMC mechanism to escape local minima.

Comments

How to avoid being blocked in a local minimum?

- ▶ Apply an algorithm from multiple starting points.
 - ▶ How to find feasible starting point?
 - ▶ How to avoid shooting in the dark?
- ▶ Change the structure of the neighborhood: variable neighborhood search
 - ▶ How to choose the neighborhood structures?
- ▶ Allow the algorithm to proceed upwards: simulated annealing
 - ▶ Climb the mountain to find another valley.
 - ▶ How to decide when it is time to climb or to go down?

Outline

Motivation

Classical problems

Algorithms

Brute force

Greedy heuristics

Exploration

Intensification

Diversification

Summary

Combinatorial optimization

Characteristics

- ▶ f and \mathcal{U} have no specific property.
- ▶ f is a black box.
- ▶ \mathcal{U} is a finite set of valid configurations.
- ▶ No optimality condition is available.

Optimization methods

Exact methods (branch and bound)

- ▶ Finds the optimal solution.
- ▶ Suffers from the curse of dimensionality.
- ▶ Requires the availability of valid and tight bounds.

Approximation algorithms

- ▶ Finds a sub-optimal solution.
- ▶ Guarantees a bound on the quality of the solution.
- ▶ Mainly used for theoretical purposes.

Heuristics

- ▶ Smart exploration of the solution space.
- ▶ No guarantee about optimality.
- ▶ Few assumptions about the problem.
- ▶ Designed to mimic manual interventions.

Heuristics: general framework

Exploration

Neighborhood

Intensification

Local search

Diversification

Escape from local minima

Meta-heuristics

- ▶ Methods designed to escape from local optima are sometimes called “meta-heuristics” .
- ▶ Plenty of variants are available in the literature.
- ▶ In general, success depends on exploiting well the properties of the problem at hand.
- ▶ VNS is one of the simplest to code.
- ▶ Additional bio-inspired methods have also been proposed and applied: genetic algorithms, ant colony optimization, etc.