
Optimization and Simulation
Optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering

Ecole Polytechnique Fédérale de Lausanne

1 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

2 / 121



Optimization

Procedure
▶ Mathematical modeling.

▶ Selection of an algorithm.

▶ Solving the problem.

3 / 121



Optimization

Mathematical modeling

▶ Decision variables x .

▶ Objective function f .

▶ Constraints F.

Optimization problem

min
x∈Rn

f (x)

subject to
x ∈ F ⊆ Rn.

4 / 121



Optimization

Selection of an algorithm

▶ Problem class: linear / convex / mixed-integer / black-box.

▶ Available structure: derivatives, convexity, integrality, decomposability.

▶ Computational budget: cheap objective vs expensive simulation.

▶ Desired guarantee: exact optimum vs good feasible solution.

5 / 121



Simulation

Z = h(X ,Y ,U ; θ̂) + εz

External input — yControl — u

Complex system — state x

Indicators — z

εyεu

εx

εz

6 / 121



General framework

Assumptions

▶ Control U is deterministic.

Z (u) = h(X ,Y , u) + εz

▶ Various features of Z are considered: mean, variance, quantile, etc.

(z1(u), . . . , zm(u))

▶ They are combined in a single indicator:

f (u) = g(z1(u), . . . , zm(u))

7 / 121



General framework: example

Pavel at Satellite
▶ X : number of customers in the bar

▶ Y : arrivals of customers

▶ u: average service time of Pavel

▶ Z (u): waiting time of the customers

▶ z1(u): mean waiting time

▶ z2(u): maximum waiting time

▶ f (u) = g(z1(u), z2(u)) = z1 + z2

8 / 121



General framework: the black box

External input — yControl — u

Complex system — state x

Indicators — z

εy

εx

εzf (u)

9 / 121



Optimization problem

min
u∈Rn

f (u)

subject to
u ∈ U ⊆ Rn

▶ u: decision variables

▶ f (u): objective function

▶ u ∈ U: constraints

▶ U: feasible set

10 / 121



Deterministic vs simulation-based objective

Deterministic optimization

▶ The objective can be evaluated exactly: f (u).

▶ Re-evaluating f (u) returns the same value.

▶ Comparisons between solutions are unambiguous.

Simulation-based optimization

▶ The objective is defined as an expectation:

f (u) = E[Z (u)].

▶ It is evaluated using simulation:

f̂ (u) ≈ f (u).

▶ Each evaluation is noisy: repeated runs give different values.

11 / 121



Coping with Monte Carlo noise

Key difficulty
When f̂ (u) is noisy,

▶ small differences between solutions may be meaningless,

▶ comparisons may be unreliable,

▶ naive optimization can be misled by randomness.

Pragmatic strategies
In practice, one often:

▶ uses the same random inputs to compare candidate solutions,

▶ increases the number of simulation runs for promising solutions,

▶ applies variance reduction techniques,

▶ relies on algorithms that tolerate noise.

12 / 121



Scope of this lecture

What we do
▶ Focus on algorithmic ideas for exploring large solution spaces.

▶ Assume simulation noise is moderate or controlled.

▶ Use heuristics that are empirically robust to noise.

What we do not cover
▶ Statistical guarantees for noisy optimization.

▶ Optimal allocation of simulation budget.

▶ Formal convergence results for stochastic optimization.

Takeaway
Heuristic optimization and variance reduction are complementary tools for
simulation-based problems.

13 / 121



Optimization problem

Combinatorial optimization

▶ f and U have no specific property.

▶ f is a black box.

▶ U is a finite set of valid configurations.

▶ No optimality condition is available.

14 / 121



Optimization methods
Exact methods (branch and bound)

▶ Finds the optimal solution.

▶ Suffers from the curse of dimensionality.

▶ Requires the availability of valid and tight bounds.

Approximation algorithms

▶ Finds a sub-optimal solution.

▶ Guarantees a bound on the quality of the solution.

▶ Mainly used for theoretical purposes.

Heuristics
▶ Smart exploration of the solution space.

▶ No guarantee about optimality.

▶ Few assumptions about the problem.

▶ Designed to mimic manual interventions.
15 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

16 / 121



The knapsack problem

▶ Patricia prepares a hike in the mountain.

▶ She has a knapsack with capacity W kg.

▶ She considers carrying a list of n items.

▶ Each item has a utility ui and a weight wi .

▶ What items should she take to maximize
the total utility, while fitting in the
knapsack?

17 / 121



Mathematical model
Decision variables

xi =

{
1 if item i goes into the knapsack,
0 otherwise

Objective function

max f (x) =
n∑

i=1

uixi

Constraints

n∑
i=1

wixi ⩽ W

xi ∈ {0, 1} i = 1, . . . , n

18 / 121



Instance
n = 12
Maximum weight: 300.

Item Utility Weight
1 80 84
2 31 27
3 48 47
4 17 22
5 27 21
6 84 96
7 34 42
8 39 46
9 46 54
10 58 53
11 23 32
12 67 78

19 / 121



Real example

Portfolio optimization

▶ Items: potential assets.

▶ Utility: return.

▶ Weight: risk.

▶ Capacity: maximum risk.

20 / 121



Traveling salesman problem

The problem

▶ Consider n cities.

▶ For any pair (i , j) of cities, the distance dij between them is known.

▶ Find the shortest possible itinerary that starts from the home town of the
salesman, visit all other cities, and come back to the origin.

21 / 121



TSP: example

Lausanne, Geneva, Zurich, Bern

G

Z

B

L

279
64

158

104

228

125

Home town: Lausanne
3 possibilities (+ their symmetric version):

▶ L → B → Z → G → L: 572 km

▶ L → B → G → Z → L: 769 km

▶ L → Z → B → G → L: 575 km

22 / 121



TSP: 12 cities (euclidean dist.)

23 / 121



Integer linear optimization problem

Linear optimization

min
x∈Rn

cTx

subject to
Ax = b

x ⩾ 0.

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

Integer Linear optimization

min
x∈Rn

cTx

subject to
Ax = b

x∈N.

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

24 / 121



Feasible set

Polyhedron
Intersection polyhedron/integer
lattice

25 / 121



Example

min
x∈R2

−3x1 − 13x2

subject to
2x1 + 9x2 ⩽ 40
11x1 − 8x2 ⩽ 82

x1, x2 ⩾ 0
x1, x2 ∈ N

26 / 121



Example

27 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

28 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

29 / 121



Brute force algorithm

min
u∈Rn

f (u)

subject to
u ∈ U ⊆ Rn

Brute force algorithm

▶ f ∗ = +∞
▶ For each x ∈ U, if f (x) < f ∗ then x∗ = x , f ∗ = f (x∗).

30 / 121



Knapsack problem

Enumeration
▶ Each object can be in or out, for a total of 2n combinations.

▶ For each of them, we must:
▶ Check that the weight is feasible.
▶ If so, calculate the utility and check if it is better than f ∗.

31 / 121



Python implementation

import numpy as np

import itertools

utility = np.array([80, 31, 48, 17, 27, 84, 34, 39, 46, 58, 23, 67])

weight = np.array([84, 27, 47, 22, 21, 96, 42, 46, 54, 53, 32, 78])

capacity = 300

n = len(utility)

fstar = -np.inf

xstar = None

for c in itertools.product([0, 1], repeat = n):

w = np.inner(c, weight)

if w <= capacity:

u = np.inner(c, utility)

if u > fstar:

xstar = c

fstar = u

Solution: (1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0). Weight: 300. Utility: 300.

32 / 121



Knapsack problem

Computational time

▶ About 2n floating point operations per combination.

▶ Assume a 1 Teraflops processor: 1012 floating point operations per second.

33 / 121



Knapsack problem

Computational time

▶ If n = 34, about 1 second to solve.

▶ If n = 40, about 1 minute.

▶ If n = 45, about 1 hour.

▶ If n = 50, about 1 day.

▶ If n = 58, about 1 year.

▶ If n = 69, about 2583 years, more than the Christian Era.

▶ If n = 78, about 1,500,000 years, time elapsed since Homo Erectus appeared
on earth.

▶ If n = 91, about 1010 years, roughly the age of the universe.

34 / 121



Traveling salesman problem

Python code

fstar = np.inf

xstar = None

for t in itertools.permutations(names[1:]):

tour = [’0’]+list(t)

tl = tsp.tourLength(tour)

if tl < fstar:

xstar = tour

fstar = tl

TSP with 12 cities
▶ 11! = 39’916’800 permutations.

▶ Running time: about 5 minutes.

▶ Solution: H–4–3–2–6–1–5–9–10–11–7–8

▶ Tour length: 128.762

35 / 121



Optimal solution

36 / 121



Integer optimization

min
x∈R2

−3x1 − 13x2

subject to
2x1 + 9x2 ⩽ 40
11x1 − 8x2 ⩽ 82

x1, x2 ⩾ 0
x1, x2 ∈ N

37 / 121



Feasible set: 36 solutions

Optimal solution (integer)

38 / 121



Brute force algorithm

Comments
▶ Very simple to implement.

▶ Works only for small instances.

▶ Curse of dimensionality.

▶ Running time increases exponentially with the size of the problem.

▶ Not a reasonable option.

39 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

40 / 121



Greedy heuristics

Principles

▶ Step by step construction of a feasible solution.

▶ At each step, a local optimization is performed.

▶ Decisions taken at previous steps are definitive.

Properties

▶ Easy to implement.

▶ Short computational time.

▶ May generate poor solutions.

▶ Used to generate initial solutions.

41 / 121



The knapsack problem

Greedy heuristic

▶ Sort the items by decreasing order of ui/wi .

▶ For each item in this order, put it in the sack if it fits.

42 / 121



The knapsack problem

Item Utility Weight Ratio
1 80 84 0.952
2 31 27 1.148
3 48 47 1.021
4 17 22 0.773
5 27 21 1.286
6 84 96 0.875
7 34 42 0.810
8 39 46 0.848
9 46 54 0.852
10 58 53 1.094
11 23 32 0.719
12 67 78 0.859

43 / 121



The knapsack problem

Item Utility Weight Ratio Order Remaining capacity
1 80 84 0.952 5 68
2 31 27 1.148 2 252
3 48 47 1.021 4 152
4 17 22 0.773
5 27 21 1.286 1 279
6 84 96 0.875 6 -28
7 34 42 0.810
8 39 46 0.848
9 46 54 0.852
10 58 53 1.094 3 199
11 23 32 0.719
12 67 78 0.859

Utility: 244 (Opt: 300). Weight: 232.

44 / 121



The traveling salesman problem

Greedy heuristic

▶ Start from home.

▶ At each step, select the closest city as the next one.

45 / 121



TSP: 12 cities

46 / 121



TSP: 12 cities

47 / 121



TSP: 12 cities

Greedy solution

▶ Easy to generate.

▶ No combinatorial complexity.

▶ Not necessarily good.

▶ Length: 165.6.

▶ Optimal tour: 128.762.

48 / 121



Integer optimization

Intuitive approach

▶ Solve the continuous relaxation.

▶ Round the solution.

49 / 121



Example

min
x∈R2

−3x1 − 13x2

subject to
2x1 + 9x2 ⩽ 40
11x1 − 8x2 ⩽ 82

x1, x2 ⩾ 0
x1, x2 ∈ N

50 / 121



Relaxation: feasible set

51 / 121



Optimal solution of the relaxation

Opt. solution relaxation (9.2, 2.4)

52 / 121



Integrality constraints

Opt. solution relaxation (9.2, 2.4)

53 / 121



Infeasible neighbors

Infeasible neighbors

Opt. solution relaxation (9.2, 2.4)

54 / 121



Solution of the integer optimization problem

Infeasible neighbors

Opt. solution relaxation (9.2, 2.4)

Optimal solution (integer)

55 / 121



Issues

▶ There are 2n different ways to round. Which one to choose?

▶ Rounding may generate an infeasible solution.

▶ The rounded solution may be far from the optimal solution.

56 / 121



Greedy heuristics

Comments
▶ Fast.

▶ Easy to implement.

▶ Useful to find an initial solution.

▶ Feasibility is usually the main issue (rounding issues with ILP).

57 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

58 / 121



Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification
Escape from local minima

59 / 121



Optimization vs sampling: a useful analogy

Sampling (MCMC)

▶ Goal: explore the state space according to a target distribution.

▶ Moves are accepted to preserve the stationary distribution.

Optimization (heuristics)

▶ Goal: explore the same type of space to find low values of f (x).

▶ Moves are designed to favor improvement, with mechanisms to escape local
minima.

Key message
Both rely on neighborhood moves; the difference is whether we aim to sample or
to optimize.

60 / 121



Neighborhood

Concept

▶ The feasible set is too large.

▶ We need to explore it in a smart way.

▶ Idea: at each iteration, restrict the optimization problem to a small feasible
subset that can be enumerated.

▶ The small subset is called a neighborhood.

▶ Ideally, all these solutions must be feasible.

▶ Neighborhoods can be constructed incrementally during the algorithms.

61 / 121



Neighborhood types

Fundamental neighborhood structure

▶ Obtained from simple modifications of the current solution.

▶ These modifications must be designed based on the properties of the
problem.

Shuffled neighborhood structure

▶ Obtained from shuffling the solutions from another neighborhood.

▶ The shuffling can be deterministic or random.

Feasible neighborhood structure

▶ Useful when a potential neighborhood structure contains infeasible solutions.

▶ Feasibility checks can also be done while generating the neighbors.

62 / 121



Neighborhood types

Truncated neighborhood structure

▶ Useful when a potential neighborhood structure is too large.

▶ The size of the neighborhood is controlled.

Combined neighborhood structure

▶ Union, intersection, or any combination of other structures.

▶ Use building blocks to construct more complex structures.

63 / 121



Neighborhoods

Important properties

▶ Neighborhood structures are used to explore the solution space.

▶ Algorithms will move from x to an element of V (x).

▶ They can be seen as “vehicles”.

▶ Symmetry: it is good practice to use symmetric neighborhoods:

y ∈ V (x)⇐⇒ x ∈ V (y).

▶ Reachability: a neighborhood V must be rich enough to reach any feasible
solution, from another feasible solution. For each x1, xK ∈ U, there exists a
sequence x2, . . . , xK−1 ∈ U such that

xk+1 ∈ V (xk), k = 1, . . . ,K − 1.

▶ Analogy with Markov chains: irreducibility.

64 / 121



What makes a good neighborhood?

Design checklist

▶ Reachability: can we reach all feasible solutions (in principle)?

▶ Feasibility handling: generate only feasible neighbors or repair/filter
infeasible ones.

▶ Cost of evaluation: neighbors should be cheap to evaluate (use
incremental updates when possible).

▶ Balance: too small ⇒ stuck; too large ⇒ expensive enumeration.

▶ Symmetry (often useful):

y ∈ V (x)⇐⇒ x ∈ V (y).

65 / 121



Integer optimization

x

66 / 121



Integer optimization
▶ Consider the current iterate x ∈ Zn.

▶ For each k = 1, . . . , n, define 2 neighbors by increasing and decreasing the
value of xk by one unit.

▶ The neighbors y k+ and y k− are defined as

y k+
i = y k−

i = xi , ∀i ̸= k , y k+
k = xk + 1, y k−

k = xk − 1.

▶ Example

x = (3, 5, 2, 8) y 2+ = (3, 6, 2, 8) y 2− = (3, 4, 2, 8)

▶ Size of the neighborhood: 2n.

▶ Feasibility should also be enforced.

▶ If n is large, truncation may be useful.

▶ The order is arbitrary, but must be specified.

▶ Shuffling may be useful.
67 / 121



Integer optimization

Creativity

▶ The concept of neighborhood is fairly general.

▶ It must be defined based on the structure of the problem.

▶ Creativity is required here.

x

68 / 121



Integer optimization

Combinations
▶ Combining neighborhoods is easy.

▶ Trade-off between flexibility and complexity.

x

69 / 121



Integer optimization

Properties

▶ Verify the properties.

▶ Symmetry and reachability.

x

70 / 121



The knapsack problem

Fundamental neighborhood

▶ Current solution: for each item i , xi = 0 or xi = 1.

▶ Neighbor solution: select an item j , and change the decision: xj ← 1− xj .

▶ Warning: check feasibility.

▶ Generalization: neighborhood of size k : select k items, and change the
decision for them (checking feasibility).

▶ Order: based on the utility/weight ratio, for instance.

71 / 121



The knapsack problem

Truncated neighborhood

▶ A neighborhood of size k modifies k variables.

▶ Number of neighbors:
n!

k!(n − k)!

▶ k = 1: n neighbors.

▶ k = n: 1 neighbor.

▶ Useful to truncate to M .

▶ Size of the neighborhood:

min(
n!

k!(n − k)!
,M).

72 / 121



Python code

def neighborhood(sack, size = 1, random = True, truncated = None):

n = len(sack)

combinations = np.array(list(itertools.combinations(range(n), size)))

if random:

np.random.shuffle(combinations)

if truncated is not None:

combinations = combinations[:truncated]

theNeighborhood = []

for c in combinations:

s = np.array(sack)

s[c] = 1 - sack[c]

theNeighborhood.append(s)

return theNeighborhood

73 / 121



Traveling salesman problem

2-OPT
▶ Select two cities.

▶ Swap their position in the tour.

▶ Visit all intermediate cities in reverse order.

Example
Current tour:

A–B–C–D–E–F–G–H–A

Exchange C and G to obtain

A–B–G–F–E–D–C–H–A.

74 / 121



Traveling salesman problem

Example: 2-OPT(1,9)

▶ Try to improve the solution using 2-OPT swapping 1 and 9.

▶ Before: H–8–7–11–6–5–1–2–3–4–10–9–H (length: 165.6)

▶ After : H–8–7–11–6–5–9–10–4–3–2–1–H (length: 173.3)

▶ No improvement.

75 / 121



Neighborhood: 2-OPT(1,9) before

76 / 121



Neighborhood: 2-OPT(1,9) after

77 / 121



Exploration

Comments
▶ Design of “vehicles” to explore the solution space.

▶ Fundamental neighborhoods exploit the structure of the problem.

▶ Various operations allow to modify and combine neighborhoods.

▶ Trade-off between flexibility and complexity.

▶ The neighborhood must be sufficiently large to increase the chances of
improvement, and sufficiently small to avoid a lengthy enumeration.

▶ Example of a neighborhood too small: one neighbor at the west.

▶ Example of a neighborhood too large: each feasible point is in the
neighborhood.

78 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

79 / 121



Local search: version one

▶ Consider the combinatorial optimization problem

min f (x)

subject to
x ∈ U.

▶ Consider the neighborhood structure V (x), where V (x) is the set of feasible
neighbors of x .

▶ At each iteration k , consider the neighbors in V (xk) one at a time.

▶ For each y ∈ V (xk), if f (y) < f (xk), then xk+1 = y and proceed to the next
iteration.

▶ If f (y) ⩾ f (xk), ∀y ∈ V (xk), xk is a local minimum. Stop.

80 / 121



Local search: version two

▶ Consider the combinatorial optimization problem

min f (x)

subject to
x ∈ U.

▶ Consider the neighborhood structure V (x) (set of neighbors of x).

▶ At iteration k , select a best neighbor

y ∈ arg min
v∈V (xk)

f (v).

▶ If f (y) ⩾ f (xk), then xk is a local minimum. Stop.

▶ Otherwise, set xk+1 = y and continue.

81 / 121



Local search: example

min
x∈R2

−3x1 − 13x2

subject to
2x1 + 9x2 ⩽ 40
11x1 − 8x2 ⩽ 82

x1, x2 ∈ N

82 / 121



Local search: example

83 / 121



Local search: example

x0 = (6, 0) - Neighborhood: E - N - W - S

84 / 121



Local search: example

x0 = (0, 3) - Neighborhood: E - N - W - S

85 / 121



Local search: example

x0 = (6, 0) - Neighborhood : N - W - S - E

86 / 121



The knapsack problem

max
x∈{0,1}n

uTx

subject to
wTx ⩽ W .

87 / 121



The knapsack problem

def localSearch(u, w, capacity, initSolution, neighborhood):

x = initSolution

ux = np.inner(u, x)

wx = np.inner(w, x)

if wx > capacity:

Exception(f’Infeasible weight {wx} > {capacity}’)

localOptimum = False

while not localOptimum:

neighbors = neighborhood(x)

localOptimum = True

for y in neighbors:

wy = np.inner(w, y)

if wy <= capacity:

uy = np.inner(u, y)

if uy > ux:

localOptimum = False

x = y

ux = uy

wx = wy

88 / 121



The knapsack problem

def neighborhood1(sack):

return neighborhood(sack, size = 1, random = False, truncated = None)

firstSack = np.array([0]*n)

localSearch(utility, weight, capacity, firstSack, neighborhood1)

First sack: [0 0 0 0 0 0 0 0 0 0 0 0] U=0 W=0

New sack : [1 0 0 0 0 0 0 0 0 0 0 0] U=80 W=84

New sack : [0 0 0 0 0 1 0 0 0 0 0 0] U=84 W=96

New sack : [1 0 0 0 0 1 0 0 0 0 0 0] U=164 W=180

New sack : [1 1 0 0 0 1 0 0 0 0 0 0] U=195 W=207

New sack : [1 0 1 0 0 1 0 0 0 0 0 0] U=212 W=227

New sack : [1 0 0 0 0 1 0 0 0 1 0 0] U=222 W=233

New sack : [1 0 0 0 0 1 0 0 0 0 0 1] U=231 W=258

New sack : [1 1 0 0 0 1 0 0 0 0 0 1] U=262 W=285

New sack : [1 0 0 0 0 1 1 0 0 0 0 1] U=265 W=300

89 / 121



The knapsack problem

def neighborhood2(sack):

return neighborhood(sack, size = 3, random = False, truncated = None)

firstSack = np.array([0]*n)

localSearch(utility, weight, capacity, firstSack, neighborhood2)

First sack: [0 0 0 0 0 0 0 0 0 0 0 0] U=0 W=0

New sack : [1 1 1 0 0 0 0 0 0 0 0 0] U=159 W=158

New sack : [1 1 0 0 0 1 0 0 0 0 0 0] U=195 W=207

New sack : [1 0 1 0 0 1 0 0 0 0 0 0] U=212 W=227

New sack : [1 0 0 0 0 1 0 0 0 1 0 0] U=222 W=233

New sack : [1 0 0 0 0 1 0 0 0 0 0 1] U=231 W=258

New sack : [0 1 0 0 0 1 0 0 0 1 0 1] U=240 W=254

New sack : [0 0 1 0 0 1 0 0 1 0 0 1] U=245 W=275

New sack : [0 0 1 0 0 1 0 0 0 1 0 1] U=257 W=274

New sack : [1 0 1 0 0 1 0 0 1 0 0 0] U=258 W=281

New sack : [1 0 1 0 0 1 0 0 0 1 0 0] U=270 W=280

New sack : [0 0 1 1 0 1 0 0 0 1 0 1] U=274 W=296

New sack : [0 0 1 0 1 1 0 0 0 1 0 1] U=284 W=295

New sack : [1 0 0 0 1 1 0 1 0 1 0 0] U=288 W=300

90 / 121



Traveling salesman problem

Procedure
▶ Start with the outcome of the greedy algorithm.

▶ Use the 2-OPT neighborhood.

▶ Use version two of the local search.

91 / 121



Current tour

92 / 121



Best neighbor: 2-OPT(8,4)

93 / 121



Best neighbor: 2-OPT(8,9)

94 / 121



Best neighbor: 2-OPT(11,7)

95 / 121



Best neighbor: 2-OPT(7,10)

96 / 121



Best neighbor: 2-OPT(10,9)

97 / 121



Comments

▶ The algorithm stops at a local minimum, that is a solution better than all its
neighbors.

▶ The outcome depends on the starting point and the structure of the
neighborhood.

▶ Several variants are possible.

98 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

99 / 121



Changing the starting point

Idea
▶ Launch the local search from several starting points.

▶ Select the best local optimum.

Issues
▶ Feasibility.

▶ Same local optimum may be generated many times.

▶ Shooting in the dark.

100 / 121



Variable Neighborhood Search

▶ aka VNS

▶ Idea: consider several neighborhood structures.

▶ When a local optimum has been found for a given neighborhood structure,
continue with another structure.

101 / 121



VNS: method

Input ▶ V1, V2, . . . , VK neighborhood structures.
▶ Initial solution x0.

Initialization ▶ xc ← x0
▶ k ← 1

Iterations Repeat

▶ Apply local search from xc using neighborhood Vk

x+ ← LS(xc ,Vk)

▶ If f (x+) < f (xc), then xc ← x+, k ← 1.
▶ Otherwise, k ← k + 1.

Until k = K .

102 / 121



VNS: example for the knapsack problem

▶ Neighborhood of size k : modify k variables.

▶ Local search: current iterate: xc
▶ randomly select a neighbor x+

▶ if wT x+ ⩽ W and uT x+ > uT xc , then xc ← x+

103 / 121



VNS: example for the knapsack problem

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

Iterations

u
T
x

Best

1
2
3 N

ei
gh
b
or
ho

o
d

104 / 121



Simulated annealing

Analogy with metallurgy

▶ Heating a metal and then cooling it down slowly improves its properties.

▶ The atoms take a more solid configuration.

In optimization:

▶ Local search can both decrease and increase the objective function.

▶ At “high temperature”, it is common to increase.

▶ At “low temperature”, increasing happens rarely.

▶ Simulated annealing: slow cooling = slow reduction of the probability to
increase.

105 / 121



Simulated annealing

Modify the local search.
For the sake of simplicity: consider a neighborhood structure containing only
feasible solutions.
Let xk be the current iterate

▶ Select y ∈ V (xk).

▶ If f (y) ⩽ f (xk), then xk+1 = y .

▶ Otherwise, xk+1 = y with probability

e−
f (y)−f (xk )

T

with T > 0.

Concretely, draw r between 0 and 1.
Accept y as next iterate if

e−
f (y)−f (xk )

T > r

106 / 121



Simulated annealing

Prob(xk+1 = y) =

{
1 if f (y) ⩽ f (xk)

e−
f (y)−f (xk )

T if f (y) > f (xk)

▶ If T is high (hot temperature), high probability to increase.

▶ If T is low, almost only decreases.

107 / 121



Simulated annealing

Example : f (xk) = 3

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

T

P
ro
b(
x k

+
1
=

y
)

f (y) = 3.5
f (y) = 4
f (y) = 5
f (y) = 6

108 / 121



Simulated annealing

▶ In practice, start with high T for flexibility.

▶ Then, decrease T progressively.

109 / 121



Simulated annealing

Input ▶ Initial solution x0
▶ Initial temperature T0, minimum temperature Tf

▶ Neighborhood structure V (x)
▶ Maximum number of iterations K

Initialize xc ← x0, x
∗ ← x0, T ← T0

110 / 121



Simulated annealing

Repeat k ← 1
▶ While k < K

▶ Randomly select a neighbor y ∈ V (xc)
▶ δ← f (y) − f (xc)
▶ If δ < 0, xc = y .
▶ Otherwise, draw r between 0 and 1
▶ If r < exp(−δ/T ), then xc = y

▶ If f (xc) < f (x∗), x∗ = xc .
▶ k ← k + 1

▶ Reduce T

Until T ⩽ Tf

111 / 121



Example: traveling salesman problem

0 2,000 5,000

150

200

250

300

Iter.

f
(x
)

xc
x∗

0

200

400

600

800

T

112 / 121



Best solution found (optimal!)

113 / 121



Practical comments

▶ Parameters must be tuned.

▶ In particular, the reduction rate of the temperature must be specified.
▶ Let δt be a typical increase of the objective function.
▶ In the beginning, we want such an increase to be accepted with probability

p0 (e.g. p0 = 0.999)
▶ At the end, we want such an increase to be accepted with probability pf

(e.g. pf = 0.00001)
▶ We allow for M updates of the temperature. So, for m = 0, . . . ,M,

T = −
δt

ln(p0 +
pf −p0
M m)

114 / 121



Simulated annealing and MCMC

Key connection
Simulated annealing applies Metropolis–Hastings to the distribution

πT (x) ∝ exp

(
−
f (x)

T

)
,

where T > 0 is the temperature.

Interpretation

▶ High T : exploration (many uphill moves accepted).

▶ Low T : exploitation (mostly downhill moves).

▶ Cooling schedule: gradually shifts from exploration to exploitation.

Takeaway
Annealing is a meta-heuristic that uses an MCMC mechanism to escape local
minima.

115 / 121



Comments

How to avoid being blocked in a local minimum?

▶ Apply an algorithm from multiple starting points.
▶ How to find feasible starting point?
▶ How to avoid shooting in the dark?

▶ Change the structure of the neighborhood: variable neighborhood search
▶ How to choose the neighborhood structures?

▶ Allow the algorithm to proceed upwards: simulated annealing
▶ Climb the mountain to find another valley.
▶ How to decide when it is time to climb or to go down?

116 / 121



Outline

Motivation

Classical problems

Algorithms
Brute force
Greedy heuristics
Exploration
Intensification
Diversification

Summary

117 / 121



Combinatorial optimization

Characteristics
▶ f and U have no specific property.

▶ f is a black box.

▶ U is a finite set of valid configurations.

▶ No optimality condition is available.

118 / 121



Optimization methods
Exact methods (branch and bound)

▶ Finds the optimal solution.

▶ Suffers from the curse of dimensionality.

▶ Requires the availability of valid and tight bounds.

Approximation algorithms

▶ Finds a sub-optimal solution.

▶ Guarantees a bound on the quality of the solution.

▶ Mainly used for theoretical purposes.

Heuristics
▶ Smart exploration of the solution space.

▶ No guarantee about optimality.

▶ Few assumptions about the problem.

▶ Designed to mimic manual interventions.
119 / 121



Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification
Escape from local minima

120 / 121



Meta-heuristics

▶ Methods designed to escape from local optima are sometimes called
“meta-heuristics”.

▶ Plenty of variants are available in the literature.

▶ In general, success depends on exploiting well the properties of the problem
at hand.

▶ VNS is one of the simplest to code.

▶ Additional bio-inspired methods have also been proposed and applied:
genetic algorithms, ant colony optimization, etc.

121 / 121


	Motivation
	Classical problems
	Algorithms
	Brute force
	Greedy heuristics
	Exploration
	Intensification
	Diversification

	Summary

