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Outline

Motivation
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The knapsack problem

Patricia prepares a hike in the mountain.
She has a knapsack with capacity Wkg.
She considers carrying a list of n items.

Each item has a utility u; and a weight w;.

vVvYyyvyy

What items should she take to maximize
the total utility, while fitting in the
knapsack?
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Knapsack problem

Simulation

» Let X be the set of all possible
configurations (2").

» Define a probability distribution:
U(x)

Zyex eU(y)

» Question: how to draw from this
discrete random variable?

P(x) =
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Bayesian inference

Choice model
» Consider a commuter n.
» Possible modes: C, = {car, bus, bike}.
> Utility

Ui, = Vin(time, cost, weather, ...;B) + €in

» Choice model:

Pn(i) = Pr(Un = U, j € Cp).

» If ¢;, is EV distributed, we have the logit model:

eVin(X;f’)

S e, €kl

P.(i;x,B) =
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Bayesian inference

Inference
» Data: Y = (i, x,)V_;.
TR T o e » Inference: estimate the true value of f3.
» Likelihood:
- :
e A i L(YIB) = T ] Palini xa. B).
n=1

» Frequentist inference: maximum likelihood
estimation.

» Bayesian inference.
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Bayesian inference

Bayesian concepts

» Likelihood:
N
L(YIB) = [ ] Palini xn. B).
n=1 . DBl
» Prior: f(B). P(JA\B> L)
» Posterior:
ripy) — LYIBIFB) _ LIYIB)/(B)

L(Y)  JLYIB)F(B)dB
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Bayesian inference

Prior: N(u, X)

F(B) = (2m) Sden(z)F exp (3 (B — ) TE (B — ) )

Posterior for logit

N Vi n(xniB)
f([‘))) Hn:l Z':elnr;vjn(xn?ﬁ)
_ JECn
F(BIY) = e

J, f T T, T
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Prediction

Plug-in prediction

B— J BF(BIY)dB.

Ignores parameter uncertainty.
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Prediction

Posterior predictive

» Future unobserved data: Yf

ﬂ%ﬂﬂszH%mYMB=JfﬂﬂﬁYﬁwwwﬂ

B B

» Assumption for prediction: Y and Yf are independent, cond. on [3:

ﬂwwrihﬂwmvmwwﬁ

Average of the likelihood on Y7 over the posterior of [3.
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Bayesian inference

Difficulties
» Complicated integrals.
» Critical to draw from the posterior.
» Must rely on simulation.

» But how do we draw from such complex distributions?

11/125



Outline

Metropolis-Hastings
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Markov chains

Stochastic process

X:;, t=0,1,...,, collection of r.v. with same support, or state space
{,....4,...,J}%

Markov process: (short memory)
Pr(Xt — I|X0 ..... Xt—l) — PI’(Xt — I|Xt_1)
Homogeneous Markov process

Pr(Xe = jIXe—1 = 1) = Pr(Xeoh = jIXt—106 = 1) = P; Vt>1,k>0.
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Markov chains

Stationary distribution
Unique solution of the system:

ﬂ_ZPﬂV ..... J,
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Markov chains

We assume...
» Homogeneous: transition probabilities do not depend on time,

Pr(Xes1 =Jj | Xe = 1) = Py

» Irreducible: every state can be reached from any other state in a finite
number of steps with positive probability.

» Aperiodic: the chain does not get trapped in deterministic cycles (returns to
a state can occur at irregular times).

» Time reversible:
7'[,'P,'J':7TJ'PJ',', I;é_j
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Simulation with Markov chains

Procedure
» We want to simulate a r.v. X with pmf

Pr(X =) = p;

» We generate a Markov process with stationary probability p; (how?)

» We simulate the evolution of the process.

pi=m; = lim Pr(X,=j) j=1,...,J.

t—o0
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Example

» A machine can be in 4 states with respect to wear
» perfect condition,
» partially damaged,
» seriously damaged,
» completely useless.
» The degradation process can be modeled by an irreducible aperiodic
homogeneous Markov process, with the following transition matrix:

0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0

P =
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Example

Stationary distribution: (g

095 0.04 0.01 0.0

513 1\| 00 09 005005 | (513 1
843232)| 00 00 080 020 | (84323
1.0 00 00 00

» Machine in perfect condition 5 days out of 8, in average.
» Repair occurs in average every 32 days
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Example: T = 20

— Perfect condition
— Fartially damaged
—— Seriously damaged

104

Completely useless
58
174
332

)l

(X

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
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Example: T =100

T=100

— Perfect condition
1.0 1 — Partially damaged

Seriously damaged
Completely useless
-— 5B

-- 14
-- 332

0.8

)l

(X

0.4 4
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Example: T = 1000

)l

(X

T=1000

104

0.8

Perfect condition
Partially damaged
Seriously damaged
Completely useless
58

1/4
332
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Example: T = 10000

)l

P(Xe=

T=10000

104

0.8

0.6

Perfect condition
Partially damaged
Seriously damaged
Completely useless
58

1/4
332
132

T
4000

T
10000
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Simulation
Assume that we are interested in simulating

Drop early states (see above example)

T+k

X))~ = 3 FX)

t=1+k
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Metropolis-Hastings

Nicholas Metropolis Wilfred Keith Hastings
1915 - 1999 1930 - 2016
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Metropolis-Hastings

Context
» Let b, j=1,...,J be positive numbers.
> Let B = Zj b;. If Jis huge, B cannot be computed.
» Let m; = b;/B.

> We want to simulate a r.v. with pmf ;.

Explore the set
» Consider a Markov process on {1, ..., J} with transition probability Q.
» Designed to explore the space {1,..., J} efficiently
» Not too fast (and miss important points to sample)

» Not too slowly (and take forever to reach important points)
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Metropolis-Hastings

Define another Markov process

» Based on the exact same states {1, ..., J} as the previous ones
» Assume the process is in state /, that is X; = /.
» Simulate the (candidate) next state j according to Q.

» Define
X J with probability o
171 i with probability 1 — o
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Metropolis-Hastings

Transition probability P

P; = Qi,‘OC,',' + Z/Z;éi Q,‘g(l — (X,,'g) otherwise

Must verify the property

1= Py = Pi+3 Py
= Qioi + Z#; Qie(1 — oje) + Zj;éi Qjo;
= Qi+ Zf;&,‘ Qie — Z#; Qieotip + Z#; Qjjoxij
= Qioi + Zg7é,- Qie

As Zj Qj =1, we have x;; = 1.

27/125



Metropolis-Hastings

Time reversibility

that is

It is satisfied if

or

T[,P,J = T[J'Pj,', I7£_j

Qo = Qo | F#

=% and o =
ij ji
T[iQij
0 Q
L = and oy =1
70 Qji

28 /125



Metropolis-Hastings
As «; is a probability
®jj = min (:’—gﬂ 1)
iWij
Simplification

Remember: 7t; = b;/B. Therefore

. bjBQJ‘i . ijj'
o= ST 1) = 1
(X_, mm(b,-BQ,-j ) mm(b;Q;j

The normalization constant B does not play a role in the computation of ;.
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Metropolis-Hastings

In summary

» Given Q and b;

» defining « as above

» creates a Markov process characterized by P
» with stationary distribution 7.
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Metropolis-Hastings

Algorithm

1.

Choose a Markov process characterized by Q.

2. Initialize the chain with a state i: t =0, Xy = /.

3. Simulate the (candidate) next state j based on Q.
4.
5

. Compare r with ojj = min (bQ” 1) If

Let r be a draw from UJ0, 1[.

bi Q!

r < o

then X;,1 =, else X; 1 = 1.

Increase t by one.

7. Go to step 3.
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Metropolis-Hastings

Implementation note
Preferable to work in the log-space

Inr <lInaj

where
In &jj = min(In b; + In Q;; — In b; — In Q;;, 0).

It is equivalent to the condition

Inr <Inbj+InQ; —Inb;i —In Q.
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Simple example

b =(20,8,3,1)
n =(3433)

BlRpEsEs = Bleo W
w
TSN < L

O
I
B N e L S
Bl e e S L e

Run MH for 10000 iterations. Collect statistics after 1000.
> Accept: [2488, 1532, 801, 283]
» Reject: [0, 952, 1705, 2239]
» Simulated: [0.627, 0.250, 0.095, 0.028]
» Target: [0.625, 0.250, 0.09375, 0.03125]
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Outline

Metropolis—Hastings: continuous state space
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Metropolis—Hastings: discrete vs continuous

Discrete state space

» Finite set of states {1,..., J}.

» Target distribution:
b
7'['.

_ )j
' Z-elzl bf.
» Transition probabilities: matrix Pj.

» Stationarity:

J
7Tj: E 7T,'P,'J'.
i=1

» If the chain is irreducible, the stationary distribution is unique.
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Metropolis—Hastings: continuous state space

Continuous state space

» State space: p € RK,
» Target density:

__b(B)
J b(y)dy’

where the normalizing constant is unknown.

(B)

» Transitions are described by a proposal density

q(B" | B).

» Stationarity is expressed by an integral equation:

(B") =Jnus)pus' | B) dB.
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Metropolis—Hastings in continuous spaces

Algorithm

From the current state (3:
1. Draw a candidate B’ ~ q(- | B).
2. Accept 3’ with probability

am,m:min(b(ﬁ’)q(ﬁ’ﬁ’) 1)_

b(B)q(BIB)

Key property

The normalizing constant of 7t(3) cancels out. Only the unnormalized density
b(B) is needed.
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Bayesian inference
Prior: N(u, X)

F(B) = (2m) Sden(z) ¢ exp (~3(B — ) TE (B — )

We need to draw from

B T

n lm
f(B|Y) = N e nn(x Y)

J, f 1= 1Y e

N
@Vinn (i)

o f(B) ——
[[1 Y co, eVnlniP)

o F(BIL(YIP).
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Markov chain Q: continuous case

Random walk
» Current state: B; € RX.

» Draw &; € RX from N(0, /).

» Next state: 3; = 3; + A&;.

Qi = Qi = d(&))

_ B;— Bi
(BB
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Markov chain Q: continuous case

Reject criterion of MH

. (bQ;
®;; = min (biQij'1>

= min b
— -

IS
—
N——

» Ratio of posteriors.

» In the log-space, difference of log of posteriors.
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Case study

Swissmetro

» a revolutionary mag-lev
underground system in
Switzerland,

> 500 km/h.

Transportation mode choice

1. Train
2. Swissmetro
3. Car

swissmetro.ch
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The model

Variables
» Travel time: TRAIN_TT, SM_TT, CAR_TT.
» Travel cost: TRAIN_CO, SM_CO, CAR_CO.

» Yearly subscription: GA.

Utility functions
» ASC TRAIN + B_TIME * TRAIN_TT 4+ B_COST * TRAIN_CO * (GA = 0).
> B.TIME * SM_TT + B_COST * SM_CO * (GA = 0).
» ASC CAR + B_.TIME * CAR_TT + B_.COST * CAR_CO.

Four unknown parameters.
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Data

Stated preferences

» Collected in March 1998.

» 750 respondents.
» 6768 choice data.

43/125



Python code

def logPosteriorDensity(beta, loglike):
prior = np.array([0, 0, 0, 0])
variance = 100
lognorm = lognormpdf (beta - prior)
return loglike + lognorm / variance

Code for lognormpdf in the Appendix.
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Python code

beta = np.array([0, 0, 0, 0])
loglike = biogeme.calculateLikelihood(beta)
logPosterior = logPosteriorDensity(beta, loglike)

T = 100000
draws = []
for total in range(T):
ksi = np.random.normal (size=len(beta))
next = beta + stepRandomWalk * ksi
nextLoglike = biogeme.calculatelLikelihood(next)
logPosteriorNext = logPosteriorDensity(next, nextLoglike)

diff = logPosteriorNext - logPosterior
r = np.random.uniform()
if np.log(r) <= diff:

beta = next

logPosterior = logPosteriorNext
draws += [betal
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Tuning random-walk MH: acceptance vs mixing

Two competing effects

» Small step size A: high acceptance, but small moves = slow exploration.

» Large step size A: large moves, but low acceptance = many repeats.

Key message

Acceptance rate alone is not a performance metric. We want good mixing: the
chain should explore the target distribution efficiently.
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Step: A = 0.1 — Accept rate: 7%

0.2
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Step: A = 1 — Accept rate: 0.02%

0.2
0.0 -
o I{/\
={_4 4
—— ASC_CAR
%_ﬂ_ﬁ. —— ASC_TRAIN
] L —— B_COST
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Draws
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Step: A = 0.01 — Accept rate: 78.2%

0.2
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Distribution of the parameter: ASC_CAR
A =0.1, 2000 dropped
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Distribution of the parameter: ASC_TRAIN
A =0.1, 2000 dropped
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Distribution of the parameter: B_TIME
A =0.1, 2000 dropped
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Distribution of the parameter: B_.COST
A =0.1, 2000 dropped
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Markov chain: gradient based

|dea
» The gradient VLg(Y|B) of the likelihood is an ascent direction.

» Instead of performing a random walk around f3;, we perform a random walk
around

Bg = Bi+ aVLg(YIBi).

» Motivation: we want to bias the search towards higher values of the
likelihood.
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Markov chain: gradient based

ldea

55125



Reject criterion of MH

» Forward transition probability:

Qs = d(&).

» Backward transition probability:

Bi
®
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Reject criterion of MH

Backward transition probability

B

B,

i BJ) " B
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Reject criterion of MH

&0 avivp)
e

[31'

Bi =B+ aVLg(YIB;) +AE

Q= o) = (BB oVLeLYIBA) )
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Python code

beta = firstBeta

loglike, g, _, _ = biogeme.calculateLikelihoodAndDerivatives(beta)
betaGrad = beta + stepGradient * g

logPosterior = logPosteriorDensity(beta, loglike)

T = 5000
draws = []
for total in range(T):
ksi = np.random.normal (size=len(beta))
next = betaGrad + stepRandomWalk * ksi
nextLoglike, nextg, _, _ = biogeme.calculateLikelihoodAndDerivatives(next)
nextGrad = next + stepGradient * nextg
logPosteriorNext = logPosteriorDensity(next, nextLoglike)

logQij = lognormpdf (ksi)

ksiback = (beta - nextGrad) / stepRandomWalk
logQji = lognormpdf (ksiback)

diff = logPosteriorNext + logQji - logPosterior - logQij
r = np.random.uniform()
if np.log(r) <= diff:
beta = next
loglike = nextLoglike
g = nextg
betaGrad = nextGrad
logPosterior = logPosteriorNext
draws += [betal

50 /125



Step: A = 0.1 — Accept rate: 8.6%
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Step: A = 1 — Accept rate: 0.01%
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Step: A = 0.01 — Accept rate: 0%
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Distribution of the parameter: ASC_CAR

A =0.1, 2000 dropped
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Distribution of the parameter:

A =0.1, 2000 dropped
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Distribution of the parameter: B_TIME

A =0.1, 2000 dropped
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Distribution of the parameter: B_.COST

A =0.1, 2000 dropped
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Mixed strategy: idea

Why mix proposal mechanisms?

» Random-walk proposals explore locally but can be slow.
» Gradient-based proposals move toward high-density regions but may get
stuck or be unstable.

» A mixed strategy combines robustness and efficiency.

Key principle

At each iteration, we randomly choose how to propose the next state.
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Mixed strategy: proposal mechanism

Two proposal kernels
From the current state f3;:
» Random walk (probability p):

Bj = Bi+AE, &~ N(O,1).
» Gradient-based move (probability 1 — p):

Beg =Bi+aVLg (Y |B)), Bj = Bg + AL,

Two-stage randomness

1. Choose the move type.

2. Draw the Gaussian noise &.
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Mixed strategy: Metropolis—Hastings

Mixture proposal density
The proposal density is a mixture:

Q= p QR+ (1—p) Q5.

The backward density Qi is defined analogously.

Acceptance probability
The Metropolis—Hastings acceptance rule is unchanged:

([ bjQji
s=min( 29 1)
o mm(biQU )

Key point
Metropolis—Hastings remains valid as long as the same mixture density is used
consistently in forward and backward transitions.
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Step: A = 0.1 — Accept rate: 8.3%
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Step: A =1 — Accept rate: 0.009%
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Step: A = 0.01 — Accept rate: 63.24%
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Distribution of the parameter:

A =0.1, 2000 dropped
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Distribution of the parameter:

A =0.1, 2000 dropped
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Distribution of the parameter: B_TIME

A =0.1, 2000 dropped
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Distribution of the parameter: B_.COST

A =0.1, 2000 dropped
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Practical considerations

Multiple starting points

» Generate multiple Markov chains.

» Initialize each sequence with a different value.

Stationarity

» Chains must have reached stationarity.
» How do we detect it?

Correlation
» Within sequences.
» Across sequences.

» It may generate inefficiencies in the simulation.
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Sequences management

Generate S sequences of length N’

s=1
s=2
s=3
s=4
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Sequences management

Warm-up: drop half of each sequence

s=1
s=2
s=3
s=4
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Sequences management

Split each sequence into two to obtain M sequences of length
N=N'/4

(L
s=1 m=1 m=2
5§=2 m=73 m=4
s=3 m=5 m==6
s=4 m=7 m=28
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Between-sequence variance

Let © be the parameter of interest, and 0, draw n from sequence m.

where

mean of each sequence

mean of the mean
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Within-sequence variance

where
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How long should the sequences be?

Potential scale reduction (Gelman—Rubin)

R _\/MJrlE
N N NW

Interpretation

> Ry — 1 as N increases (when chains have mixed).
» Choose N such that I/R’\N < 1.1.

See Gelman et al. (2013) Section 11.4.
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Practical considerations: warm-up and stationarity

Warm-up (burn-in)
» Early iterations depend strongly on initialization.
» Discard an initial part of each chain before collecting statistics.

Stationarity (informal)

» After warm-up, the chain should behave as if it were sampling from the
target.

» Diagnostics help detect lack of mixing / non-stationarity.
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Practical considerations: multiple chains

Why multiple chains?

» Run several chains from dispersed starting points.

» Compare their behavior to detect convergence problems.

Gelman—Rubin diagnostic

> R compares between-chain and within-chain variability.

» Values close to 1 indicate that chains mix similarly.
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Autocorrelation and effective sample size

Why MCMC is different from i.i.d. simulation

Successive draws from a Markov chain are typically correlated:

COI’r(Xt, Xt+k) % O

Consequence

Correlation reduces the amount of information in T iterations. We summarize
this by the effective sample size (ESS):

ESST.

Practical takeaway

More iterations are not always better: we want low autocorrelation and good
mixing.
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Practical considerations: quick checklist

What to monitor
» trace plots (drift? jumps? sticking?),
> acceptance rate (too low? too high?),
> R across chains,

» ESS / autocorrelation (how much independent information?).

Rule of thumb
If diagnostics disagree, trust the most conservative one and run longer / retune.
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Outline

Gibbs sampling
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Gibbs sampling

Motivation
» Draw from multivariate distributions.

» Main difficulty: deal with correlations.

Metropolis-Hastings
» Let X = (X!, X2,...,X") be a random vector with pmf (or pdf) p(x).

» Assume we can draw from the conditionals:
Pr XX =x), j#1i), i=1,...,n

» Markov process. Assume current state is x.

» Draw randomly (equal probability) a coordinate i.
» Draw r from the ith conditional.

» New state: y = (x!,..., XL Xt x").
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Gibbs sampling

Transition probability

Qq —lPr( X=X =, j#i) = nPr(XJ'pzb;)f J#1)

» The denominator is independent of X',
» So @, is proportional to p(y).

Metropolis-Hastings
- (Ply) Qyx ) . <p(y)p(><) )
Oy =Mmin| ——= 1) =min| ————=, 1) =1
g (p(X)Qxy p(x)p(y)
The candidate state is always accepted.
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Example: bivariate normal distribution

1 2
Y Ly POxOy Oy

Marginal distribution:

YI(X=x)~N (uy + ?p(x — ux), (1— p2)02y>
X

Apply Gibbs sampling to draw from:

M((5)-(es 1))

Note: just for illustration. Should use Cholesky factor.
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Example: pdf

pdf bivariate normal Distribution

4
0.36
3
0.32
2
1
2
> 0 g
[
a}
-1
-2
-3
-4
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Example: draws from Gibbs sampling

. Afig
. A
Y
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Outline

Simulated annealing
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Simulated annealing
Combinatorial optimization

min f(x
xeF ( )
where the feasible set F is a large finite set of vectors.

Set of optimal solutions
X*={xeJF|f(x) <fly), Vy € Ftand f(x*) =", Vx* € X*.

Probability mass function on &
ef?\f(x)

pa(x) = ﬁ A> 0.

—A
yeF €
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Simulated annealing

( ) efkf(x)
PaX) = _
ZyEﬂ’ e Af(y)
» Equivalently
) QMF —F(x))
Pa\X) = .
S g eNE )
» As f*— f(x) <0, when A — 0o, we have
i (x) d(x € X*)
im X)=———",
Ao PA 1]
where
1 ifxeXr

d(x € X¥) :{

0 otherwise.
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Example

F=1{1,2,3}, f(F)={01,0}

1
1) =
p(1) D1 e N
—A
e
2) = —
p?\( ) 2+e,)\1
1
pA(3) =

2+e N

97/125



Example
1

0.8

0.6

<
Q
0.4

0.2
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Simulated annealing

vVvvyvVvYvVYyVvyYvVYyyYy

v

If Ais large,
we generate a Markov chain with stationary distribution py(x).
The mass is concentrated on optimal solutions.

As the normalizing constant is not needed, only e*f"~f(*)) is ysed.

Construction of the Markov process through the concept of neighborhood.

A neighbor y of x is obtained by simple modifications of x.
The Markov process will proceed from neighbors to neighbors.

The neighborhood structure must be designed such that the chain is
irreducible, that is the whole space & must be covered.

It must be designed also such that the size of the neighborhood is
reasonably small.
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Neighborhood

Metropolis-Hastings

» Denote N(x) the set of neighbors of x.
» Define a Markov process where the next state is a randomly drawn neighbor.
» Transition probability:

» Metropolis Hastings:

)@ . (e MVIN)
Xy, = min (p(TQXy, 1) = min (—e_)‘f(x)|N(y)|, 1
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Neighborhood

Notes

» The neighborhood structure can always be arranged so that each vector has
the same number of neighbors. In this case,

Xxy = MIn m, 1
» If y is better than x, the next state is automatically accepted.
» Otherwise, it is accepted with a probability that depends on A.

» If A is high, the probability is small.

» When A is small, it is easy to escape from local optima.
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Heuristic

Issue

» The number of iterations needed to reach a stationary state and draw an
optimal solution may exceed the number of feasible solutions in the set.

» The acceptance probability is very small.
» Therefore, a complete enumeration works better.

» The method is used as a heuristic.
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Takeaways

Core ideas

» MCMC draws from a target 7t(x) o< b(x) without computing normalizing
constants.

» Metropolis—Hastings: propose with g(- | x), correct with an acceptance
probability.
» Gibbs sampling: special case where proposals are always accepted.

Practice
» Tuning matters (step size, proposal design).
» Diagnose: warm-up, mixing, autocorrelation, l/?\ ESS.

» Use draws for expectations and posterior predictive quantities.
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Outline

Appendix: Introduction to Markov chains
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Markov Chains

Andrey Markov, 1856-1922, Russian mathematician.
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Markov Chains: glossary

Stochastic process

X:;, t=0,1,...,, collection of r.v. with same support, or state space
{,....4,...,J}%

Markov process: (short memory)
Pr(Xt — I|X0 ..... Xt—l) — PI’(Xt — I|Xt_1)
Homogeneous Markov process

Pr(X: =jIXi1 =1) =Pr(Xesx = jIXe1pu = i) = Py Vt > 1,k > 0.
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Markov Chains

Transition matrix

P e R

Properties:

Y Pp=1i=1...,J, P;>0,Vij

Jj=1

Ergodicity
» |If state j can be reached from state / with non zero probability, and i from j,
we say that / communicates with .
» Two states that communicate belong to the same class.
» A Markov chain is irreducible or ergodic if it contains only one class.
» With an ergodic chain, it is possible to go to every state from any state.
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Markov Chains

Aperiodic
> P,-j- is the probability that the process reaches state j from / after t steps.

» Consider all t such that P > 0. The largest common divisor d is called the
period of state /.

» A state with period 1 is aperiodic.

» If P; > 0, state / is aperiodic.

» The period is the same for all states in the same class.

» Therefore, if the chain is irreducible, if one state is aperiodic, they all are.
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A periodic chain

0o lotlo
00102
P=|10000]| d=3
0030 3
10000
P.>0fort=3,6,91215...
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Another periodic chain

M U — —loN

— —loN —

B
G

o O o

o O o

O —HiN

o O o

000010

- >0fort=46281012,...

t
1

110/125



An aperiodic chain

o O O

o O O

O —Hln

o O O

010000
000100
000010

— —HNnO

>0 fort=3,4,6,7,8910,11,12...

t

ii
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Aperiodic chain

An equivalent definition

An irreducible Markov chain is said to be aperiodic if for some t > 0 and some
state i, we have
Pr(X; =ilXo=1)>0

and
Pr(XHl = I’Xo = I) >0
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Intuition

Oscillation

- (20)

The chain will not “converge” to something stable.
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Outline

Appendix: Stationary distributions
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Markov Chains

Stationary probabilities
J
Pr(j) = > Pr(jli) Pr(i)
i=1

» Stationary probabilities: unique solution of the system

» Solution exists for any irreducible chain.
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Example

» A machine can be in 4 states with respect to wear
» perfect condition,
» partially damaged,
» seriously damaged,
» completely useless.
» The degradation process can be modeled by an irreducible aperiodic
homogeneous Markov process, with the following transition matrix:

0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0

P =
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Example

Stationary distribution: (g %, 3 3%)

0.95 0.04 0.01 0.0
51 3 1 00 090 005 005 | (51 3 1
(é’Z’ 3_23_2) 0.0 0.0 080 020 | — (é’fm_z' ﬁ)
1.0 00 0.0 00
» Machine in perfect condition 5 days out of 8, in average.
» Repair occurs in average every 32 days

From now on: Markov process = irreducible aperiodic homogeneous Markov
process
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Markov Chains

Detailed balance equations
Consider the following system of equations:

J
X,'P,'J'ZXJ'PJ',', I;éj, ZX,':]- (2)
i=1

We sum over i:
J J
> xPi=x) Pi=x
i=1 i=1

If (2) has a solution, it is also a solution of (1). As 7t is the unique solution of (1)

then x = 7.
TGPy =GPy, i #]

The chain is said time reversible
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Stationary distributions
Property of irreducible aperiodic Markov chains

= lim Pr(X;=j) j=1,..., J.

t—o00

Ergodicity
» Let f be any function on the state space.
» Then, with probability 1,

T J

.1 .

Tllnoo? E f(X;) = E Tt (J).
t=1 j=1

» Computing the expectation of a function of the stationary states is the same
as to take the average of the values along a trajectory of the process.
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Example: T = 20

— Perfect condition
— Fartially damaged
—— Seriously damaged

104

Completely useless
58
174
332

)l

(X

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
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Example: T =100

T=100

— Perfect condition
1.0 1 — Partially damaged

Seriously damaged
Completely useless
-— 5B

-- 14
-- 332

0.8

)l

(X

0.4 4
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Example: T = 1000

)l

(X

T=1000

104

0.8

Perfect condition
Partially damaged
Seriously damaged
Completely useless
58

1/4
332
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Example: T = 10000

)l

P(Xe=

T=10000

104

0.8

0.6

Perfect condition
Partially damaged
Seriously damaged
Completely useless
58

1/4
332
132

T
4000

T
10000
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A periodic example

It does not work for periodic chains

01
(1)
1):{1 if tis odd

Pr(X: = 0 if tiseven

lim Pr(X; = 1) does not exist

t—00

Stationary distribution

= (05)
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Python code

def lognormpdf (x,mu=None,S=None) :
""" log of gaussian pdf of x, when x ~ N(mu,sigma) """
nx = x.size
if mu is None:
mu = np.array([0]*nx)
if S is None:
S = np.identity(nx)

norm_coeff = nx*np.log(2+*np.pi)+np.linalg.slogdet(S) [1]
err = x-mu
if (sp.issparse(S)):
numerator = spln.spsolve(S, err).T.dot(err)
else:

numerator = np.linalg.solve(S, err).T.dot(err)

return -0.5*%(norm_coeff+numerator)
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