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The knapsack problem

▶ Patricia prepares a hike in the mountain.

▶ She has a knapsack with capacity W kg.

▶ She considers carrying a list of n items.

▶ Each item has a utility ui and a weight wi .

▶ What items should she take to maximize
the total utility, while fitting in the
knapsack?
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Knapsack problem

Simulation
▶ Let X be the set of all possible

configurations (2n).

▶ Define a probability distribution:

P(x) =
eU(x)∑
y∈X eU(y)

▶ Question: how to draw from this
discrete random variable?
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Bayesian inference

Choice model
▶ Consider a commuter n.

▶ Possible modes: Cn = {car , bus, bike}.

▶ Utility

Uin = Vin(time, cost,weather , . . . ;β) + εin

▶ Choice model:

Pn(i) = Pr(Uin ⩾ Ujn, j ∈ Cn).

▶ If εin is EV distributed, we have the logit model:

Pn(i ; x ,β) =
eVin(x ;β)∑

j∈Cn
eVjn(x ;β)

.
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Bayesian inference

Inference
▶ Data: Y = (in, xn)

N
n=1.

▶ Inference: estimate the true value of β.

▶ Likelihood:

L(Y |β) =

N∏
n=1

Pn(in; xn,β).

▶ Frequentist inference: maximum likelihood
estimation.

▶ Bayesian inference.
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Bayesian inference

Bayesian concepts

▶ Likelihood:

L(Y |β) =

N∏
n=1

Pn(in; xn,β).

▶ Prior: f (β).

▶ Posterior:

f (β|Y ) =
L(Y |β)f (β)

L(Y )
=

L(Y |β)f (β)∫
L(Y |β)f (β)dβ

.
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Bayesian inference

Prior: N(µ,Σ)

f (β) = (2π)−
K
2 det(Σ)−

1
2 exp

(
−
1

2
(β− µ)TΣ−1(β− µ)

)

Posterior for logit

f (β|Y ) =
f (β)

∏N
n=1

eVinn(xn ;β)∑
j∈Cn

e
Vjn(xn ;β)∫

γ
f (γ)

∏N
n=1

eVinn(xn ;γ)∑
j∈Cn

e
Vjn(xn ;γ)

.
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Prediction

Plug-in prediction

β̄ =

∫
βf (β|Y )dβ.

Ignores parameter uncertainty.
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Prediction

Posterior predictive

▶ Future unobserved data: Yf

f (Yf |Y ) =

∫
β

f (Yf ,β|Y )dβ =

∫
β

f (Yf |β,Y )f (β|Y )dβ.

▶ Assumption for prediction: Y and Yf are independent, cond. on β:

f (Yf |Y ) =

∫
β

f (Yf |β)f (β|Y )dβ.

Average of the likelihood on Yf over the posterior of β.
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Bayesian inference

Difficulties
▶ Complicated integrals.

▶ Critical to draw from the posterior.

▶ Must rely on simulation.

▶ But how do we draw from such complex distributions?
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Markov chains

Stochastic process
Xt , t = 0, 1, . . . ,, collection of r.v. with same support, or state space
{1, . . . , i , . . . , J}.

Markov process: (short memory)

Pr(Xt = i |X0, . . . ,Xt−1) = Pr(Xt = i |Xt−1)

Homogeneous Markov process

Pr(Xt = j |Xt−1 = i) = Pr(Xt+k = j |Xt−1+k = i) = Pij ∀t ⩾ 1, k ⩾ 0.
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Markov chains

Stationary distribution
Unique solution of the system:

πj =

J∑
i=1

Pijπi , ∀j = 1, . . . , J ,

J∑
j=1

πj = 1.
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Markov chains

We assume...
▶ Homogeneous: transition probabilities do not depend on time,

Pr(Xt+1 = j | Xt = i) = Pij .

▶ Irreducible: every state can be reached from any other state in a finite
number of steps with positive probability.

▶ Aperiodic: the chain does not get trapped in deterministic cycles (returns to
a state can occur at irregular times).

▶ Time reversible:
πiPij = πjPji , i ̸= j .
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Simulation with Markov chains

Procedure
▶ We want to simulate a r.v. X with pmf

Pr(X = j) = pj .

▶ We generate a Markov process with stationary probability pj (how?)

▶ We simulate the evolution of the process.

pj = πj = lim
t→∞Pr(Xt = j) j = 1, . . . , J .
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Example

▶ A machine can be in 4 states with respect to wear
▶ perfect condition,
▶ partially damaged,
▶ seriously damaged,
▶ completely useless.

▶ The degradation process can be modeled by an irreducible aperiodic
homogeneous Markov process, with the following transition matrix:

P =


0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0


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Example

Stationary distribution:
(
5
8
, 1
4
, 3
32
, 1
32

)
(
5

8
,
1

4
,
3

32
,
1

32

)
0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0

 =

(
5

8
,
1

4
,
3

32
,
1

32

)

▶ Machine in perfect condition 5 days out of 8, in average.

▶ Repair occurs in average every 32 days
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Example: T = 20
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Example: T = 100
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Example: T = 1000
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Example: T = 10000

22 / 125



Simulation
Assume that we are interested in simulating

E[f (X )] =

J∑
j=1

f (j)pj .

Property of Markov chain: ergodicity

E[f (X )] = lim
T→∞

1

T

T∑
t=1

f (Xt).

Drop early states (see above example)

E[f (X )] ≈ 1

T

T+k∑
t=1+k

f (Xt).
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Metropolis-Hastings

Nicholas Metropolis Wilfred Keith Hastings
1915 – 1999 1930 – 2016
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Metropolis-Hastings

Context
▶ Let bj , j = 1, . . . , J be positive numbers.

▶ Let B =
∑

j bj . If J is huge, B cannot be computed.

▶ Let πj = bj/B .

▶ We want to simulate a r.v. with pmf πj .

Explore the set

▶ Consider a Markov process on {1, . . . , J} with transition probability Q.

▶ Designed to explore the space {1, . . . , J} efficiently

▶ Not too fast (and miss important points to sample)

▶ Not too slowly (and take forever to reach important points)
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Metropolis-Hastings

Define another Markov process

▶ Based on the exact same states {1, . . . , J} as the previous ones

▶ Assume the process is in state i , that is Xt = i .

▶ Simulate the (candidate) next state j according to Q.

▶ Define

Xt+1 =

{
j with probability αij

i with probability 1− αij
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Metropolis-Hastings

Transition probability P

Pij = Qijαij if i ̸= j
Pii = Qiiαii +

∑
ℓ̸=i Qiℓ(1− αiℓ) otherwise

Must verify the property

1 =
∑

j Pij = Pii +
∑

j ̸=i Pij

= Qiiαii +
∑

ℓ̸=i Qiℓ(1− αiℓ) +
∑

j ̸=i Qijαij

= Qiiαii +
∑

ℓ̸=i Qiℓ −
∑

ℓ̸=i Qiℓαiℓ +
∑

j ̸=i Qijαij

= Qiiαii +
∑

ℓ̸=i Qiℓ

As
∑

j Qij = 1, we have αii = 1.
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Metropolis-Hastings

Time reversibility

πiPij = πjPji , i ̸= j

that is
πiQijαij = πjQjiαji , i ̸= j

It is satisfied if

αij =
πjQji

πiQij
and αji = 1

or
πiQij

πjQji
= αji and αij = 1
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Metropolis-Hastings

As αij is a probability

αij = min

(
πjQji

πiQij
, 1

)

Simplification
Remember: πj = bj/B . Therefore

αij = min

(
bjBQji

biBQij
, 1

)
= min

(
bjQji

biQij
, 1

)
The normalization constant B does not play a role in the computation of αij .

29 / 125



Metropolis-Hastings

In summary

▶ Given Q and bj
▶ defining α as above

▶ creates a Markov process characterized by P

▶ with stationary distribution π.
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Metropolis-Hastings

Algorithm

1. Choose a Markov process characterized by Q.

2. Initialize the chain with a state i : t = 0, X0 = i .

3. Simulate the (candidate) next state j based on Q.

4. Let r be a draw from U [0, 1[.

5. Compare r with αij = min
(

bjQji

biQij
, 1
)
. If

r < αij

then Xt+1 = j , else Xt+1 = i .

6. Increase t by one.

7. Go to step 3.
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Metropolis-Hastings

Implementation note
Preferable to work in the log-space

ln r < lnαij

where
lnαij = min(ln bj + lnQji − ln bi − lnQij , 0).

It is equivalent to the condition

ln r < ln bj + lnQji − ln bi − lnQij .
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Simple example

b =(20,8, 3 , 1 )
π =( 5

8
,1
4
, 3
32
, 1
32
)

Q =


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


Run MH for 10000 iterations. Collect statistics after 1000.

▶ Accept: [2488, 1532, 801, 283]

▶ Reject: [0, 952, 1705, 2239]

▶ Simulated: [0.627, 0.250, 0.095, 0.028]

▶ Target: [0.625, 0.250, 0.09375, 0.03125]
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Metropolis–Hastings: discrete vs continuous

Discrete state space

▶ Finite set of states {1, . . . , J}.

▶ Target distribution:

πj =
bj∑J
ℓ=1 bℓ

.

▶ Transition probabilities: matrix Pij .

▶ Stationarity:

πj =

J∑
i=1

πiPij .

▶ If the chain is irreducible, the stationary distribution is unique.
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Metropolis–Hastings: continuous state space

Continuous state space

▶ State space: β ∈ RK .

▶ Target density:

π(β) =
b(β)∫
b(γ) dγ

,

where the normalizing constant is unknown.

▶ Transitions are described by a proposal density

q(β ′ | β).

▶ Stationarity is expressed by an integral equation:

π(β ′) =

∫
π(β) p(β ′ | β) dβ.
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Metropolis–Hastings in continuous spaces

Algorithm
From the current state β:

1. Draw a candidate β ′ ∼ q(· | β).
2. Accept β ′ with probability

α(β,β ′) = min

(
b(β ′) q(β | β ′)

b(β) q(β ′ | β)
, 1

)
.

Key property
The normalizing constant of π(β) cancels out. Only the unnormalized density
b(β) is needed.
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Bayesian inference

Prior: N(µ,Σ)

f (β) = (2π)−
K
2 det(Σ)−

1
2 exp

(
−
1

2
(β− µ)TΣ−1(β− µ)

)

We need to draw from

f (β|Y ) =
f (β)

∏N
n=1

eVinn(xn ;β)∑
j∈Cn

e
Vjn(xn ;β)∫

γ
f (γ)

∏N
n=1

eVinn(xn ;γ)∑
j∈Cn

e
Vjn(xn ;γ)

∝ f (β)
N∏

n=1

eVinn(xn;β)∑
j∈Cn

eVjn(xn;β)

∝ f (β)L(Y |β).
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Markov chain Q: continuous case

Random walk
▶ Current state: βi ∈ RK .

▶ Draw ξi ∈ RK from N(0, I ).

▶ Next state: βj = βi + λξi .

Qij = Qji = ϕ(ξi)

= ϕ

(
βj − βi

λ

)
.

βi

βj

λξi
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Markov chain Q: continuous case

Reject criterion of MH

αij = min

(
bjQji

biQij
, 1

)
= min

(
bj
bi
, 1

)
= min

(
f (βj)L(Y |βj)

f (βi)L(Y |βi)
, 1

)

▶ Ratio of posteriors.

▶ In the log-space, difference of log of posteriors.
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Case study

Swissmetro

▶ a revolutionary mag-lev
underground system in
Switzerland,

▶ 500 km/h.
swissmetro.ch

Transportation mode choice

1. Train

2. Swissmetro

3. Car
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The model

Variables
▶ Travel time: TRAIN TT, SM TT, CAR TT.

▶ Travel cost: TRAIN CO, SM CO, CAR CO.

▶ Yearly subscription: GA.

Utility functions

▶ ASC TRAIN + B TIME * TRAIN TT + B COST * TRAIN CO * (GA = 0).

▶ B TIME * SM TT + B COST * SM CO * (GA = 0).

▶ ASC CAR + B TIME * CAR TT + B COST * CAR CO.

Four unknown parameters.
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Data

Stated preferences

▶ Collected in March 1998.

▶ 750 respondents.

▶ 6768 choice data.
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Python code

def logPosteriorDensity(beta, loglike):

prior = np.array([0, 0, 0, 0])

variance = 100

lognorm = lognormpdf(beta - prior)

return loglike + lognorm / variance

Code for lognormpdf in the Appendix.
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Python code

beta = np.array([0, 0, 0, 0])

loglike = biogeme.calculateLikelihood(beta)

logPosterior = logPosteriorDensity(beta, loglike)

T = 100000

draws = []

for total in range(T):

ksi = np.random.normal(size=len(beta))

next = beta + stepRandomWalk * ksi

nextLoglike = biogeme.calculateLikelihood(next)

logPosteriorNext = logPosteriorDensity(next, nextLoglike)

diff = logPosteriorNext - logPosterior

r = np.random.uniform()

if np.log(r) <= diff:

beta = next

logPosterior = logPosteriorNext

draws += [beta]
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Tuning random-walk MH: acceptance vs mixing

Two competing effects

▶ Small step size λ: high acceptance, but small moves ⇒ slow exploration.

▶ Large step size λ: large moves, but low acceptance ⇒ many repeats.

Key message
Acceptance rate alone is not a performance metric. We want good mixing: the
chain should explore the target distribution efficiently.
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Step: λ = 0.1 — Accept rate: 7%
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Step: λ = 1 — Accept rate: 0.02%
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Step: λ = 0.01 — Accept rate: 78.2%
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Distribution of the parameter: ASC CAR
λ = 0.1, 2000 dropped
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Distribution of the parameter: ASC TRAIN
λ = 0.1, 2000 dropped
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Distribution of the parameter: B TIME
λ = 0.1, 2000 dropped
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Distribution of the parameter: B COST
λ = 0.1, 2000 dropped

53 / 125



Markov chain: gradient based

Idea
▶ The gradient ∇Lβ(Y |β) of the likelihood is an ascent direction.

▶ Instead of performing a random walk around βi , we perform a random walk
around

βg = βi + α∇Lβ(Y |βi).

▶ Motivation: we want to bias the search towards higher values of the
likelihood.
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Markov chain: gradient based

Idea

βi βg

βj

α∇Lβ(Y |βi)

λξi
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Reject criterion of MH

▶ Forward transition probability:

Qij = ϕ(ξi).

▶ Backward transition probability:

βi βg

βj

?
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Reject criterion of MH

Backward transition probability

βi βg

βj

βj + α∇Lβ(Y |βj)

λξj
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Reject criterion of MH

βi βg

βj

βj + α∇Lβ(Y |βj)

λξj

βi = βj + α∇Lβ(Y |βj) + λξj

Qji = ϕ(ξj) = ϕ

(
βi − βj − α∇Lβ(Y |βj)

λ

)
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Python code

beta = firstBeta

loglike, g, _, _ = biogeme.calculateLikelihoodAndDerivatives(beta)

betaGrad = beta + stepGradient * g

logPosterior = logPosteriorDensity(beta, loglike)

T = 5000

draws = []

for total in range(T):

ksi = np.random.normal(size=len(beta))

next = betaGrad + stepRandomWalk * ksi

nextLoglike, nextg, _, _ = biogeme.calculateLikelihoodAndDerivatives(next)

nextGrad = next + stepGradient * nextg

logPosteriorNext = logPosteriorDensity(next, nextLoglike)

logQij = lognormpdf(ksi)

ksiback = (beta - nextGrad) / stepRandomWalk

logQji = lognormpdf(ksiback)

diff = logPosteriorNext + logQji - logPosterior - logQij

r = np.random.uniform()

if np.log(r) <= diff:

beta = next

loglike = nextLoglike

g = nextg

betaGrad = nextGrad

logPosterior = logPosteriorNext

draws += [beta]
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Step: λ = 0.1 — Accept rate: 8.6%
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Step: λ = 1 — Accept rate: 0.01%
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Step: λ = 0.01 — Accept rate: 0%
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Distribution of the parameter: ASC CAR

λ = 0.1, 2000 dropped

Random walk Gradient based
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Distribution of the parameter: ASC TRAIN

λ = 0.1, 2000 dropped

Random walk Gradient based
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Distribution of the parameter: B TIME

λ = 0.1, 2000 dropped

Random walk Gradient based
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Distribution of the parameter: B COST

λ = 0.1, 2000 dropped

Random walk Gradient based
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Mixed strategy: idea

Why mix proposal mechanisms?

▶ Random-walk proposals explore locally but can be slow.

▶ Gradient-based proposals move toward high-density regions but may get
stuck or be unstable.

▶ A mixed strategy combines robustness and efficiency.

Key principle
At each iteration, we randomly choose how to propose the next state.
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Mixed strategy: proposal mechanism

Two proposal kernels
From the current state βi :

▶ Random walk (probability p):

βj = βi + λξ, ξ ∼ N(0, I ).

▶ Gradient-based move (probability 1− p):

βg = βi + α∇Lβ(Y | βi), βj = βg + λξ.

Two-stage randomness

1. Choose the move type.

2. Draw the Gaussian noise ξ.
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Mixed strategy: Metropolis–Hastings

Mixture proposal density
The proposal density is a mixture:

Qij = p QRW
ij + (1− p)QGrad

ij .

The backward density Qji is defined analogously.

Acceptance probability
The Metropolis–Hastings acceptance rule is unchanged:

αij = min

(
bjQji

biQij
, 1

)
.

Key point
Metropolis–Hastings remains valid as long as the same mixture density is used
consistently in forward and backward transitions.
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Step: λ = 0.1 — Accept rate: 8.3%
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Step: λ = 1 — Accept rate: 0.009%
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Step: λ = 0.01 — Accept rate: 63.24%
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Distribution of the parameter: ASC CAR

λ = 0.1, 2000 dropped

Random walk Mixed
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Distribution of the parameter: ASC TRAIN

λ = 0.1, 2000 dropped

Random walk Mixed
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Distribution of the parameter: B TIME

λ = 0.1, 2000 dropped

Random walk Mixed
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Distribution of the parameter: B COST

λ = 0.1, 2000 dropped

Random walk Mixed
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Practical considerations

Multiple starting points

▶ Generate multiple Markov chains.

▶ Initialize each sequence with a different value.

Stationarity

▶ Chains must have reached stationarity.

▶ How do we detect it?

Correlation
▶ Within sequences.

▶ Across sequences.

▶ It may generate inefficiencies in the simulation.
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Sequences management

Generate S sequences of length N ′

s = 4

s = 3

s = 2

s = 1
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Sequences management

Warm-up: drop half of each sequence

s = 4

s = 3

s = 2

s = 1
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Sequences management

Split each sequence into two to obtain M sequences of length
N = N ′/4

s = 4

s = 3

s = 2

s = 1

m = 7

m = 5

m = 3

m = 1

m = 8

m = 6

m = 4

m = 2

N
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Between-sequence variance

Let θ be the parameter of interest, and θnm draw n from sequence m.

B =
N

M − 1

M∑
m=1

(θ̄m − θ̄)2,

where

θ̄m =
1

N

N∑
n=1

θnm mean of each sequence

θ̄ =
1

M

M∑
m=1

θ̄m mean of the mean
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Within-sequence variance

W =
1

M

M∑
m=1

v 2
m

where

v 2
m =

1

N − 1

N∑
n=1

(θnm − θ̄m)
2.
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How long should the sequences be?

Potential scale reduction (Gelman–Rubin)

R̂N =

√
N − 1

N
+

1

N

B

W
.

Interpretation

▶ R̂N → 1 as N increases (when chains have mixed).

▶ Choose N such that R̂N ⩽ 1.1.

See Gelman et al. (2013) Section 11.4.
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Practical considerations: warm-up and stationarity

Warm-up (burn-in)

▶ Early iterations depend strongly on initialization.

▶ Discard an initial part of each chain before collecting statistics.

Stationarity (informal)

▶ After warm-up, the chain should behave as if it were sampling from the
target.

▶ Diagnostics help detect lack of mixing / non-stationarity.
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Practical considerations: multiple chains

Why multiple chains?

▶ Run several chains from dispersed starting points.

▶ Compare their behavior to detect convergence problems.

Gelman–Rubin diagnostic

▶ R̂ compares between-chain and within-chain variability.

▶ Values close to 1 indicate that chains mix similarly.
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Autocorrelation and effective sample size

Why MCMC is different from i.i.d. simulation
Successive draws from a Markov chain are typically correlated:

Corr(Xt ,Xt+k) ̸= 0.

Consequence
Correlation reduces the amount of information in T iterations. We summarize
this by the effective sample size (ESS):

ESS ⩽ T .

Practical takeaway
More iterations are not always better: we want low autocorrelation and good
mixing.
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Practical considerations: quick checklist

What to monitor
▶ trace plots (drift? jumps? sticking?),

▶ acceptance rate (too low? too high?),

▶ R̂ across chains,

▶ ESS / autocorrelation (how much independent information?).

Rule of thumb
If diagnostics disagree, trust the most conservative one and run longer / retune.
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Gibbs sampling

Motivation
▶ Draw from multivariate distributions.

▶ Main difficulty: deal with correlations.

Metropolis-Hastings

▶ Let X = (X 1,X 2, . . . ,X n) be a random vector with pmf (or pdf) p(x).

▶ Assume we can draw from the conditionals:

Pr(X i |X j = x j , j ̸= i), i = 1, . . . , n.

▶ Markov process. Assume current state is x .
▶ Draw randomly (equal probability) a coordinate i .
▶ Draw r from the ith conditional.
▶ New state: y = (x1, . . . , x i−1, r , x i+1, . . . , xn).
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Gibbs sampling

Transition probability

Qxy =
1

n
Pr(X i = r |X j = x j , j ̸= i) =

p(y)

n Pr(X j = x j , j ̸= i)

▶ The denominator is independent of X i .

▶ So Qxy is proportional to p(y).

Metropolis-Hastings

αxy = min

(
p(y)Qyx

p(x)Qxy
, 1

)
= min

(
p(y)p(x)

p(x)p(y)
, 1

)
= 1

The candidate state is always accepted.
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Example: bivariate normal distribution

(
X
Y

)
∼ N

((
µX

µY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
Marginal distribution:

Y |(X = x) ∼ N

(
µY +

σY

σX
ρ(x − µX ), (1− ρ2)σ2

Y

)
Apply Gibbs sampling to draw from:

N

((
0
0

)
,

(
1 0.9
0.9 1

))
Note: just for illustration. Should use Cholesky factor.
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Example: pdf

92 / 125



Example: draws from Gibbs sampling
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Simulated annealing

Combinatorial optimization

min
x∈F

f (x)

where the feasible set F is a large finite set of vectors.

Set of optimal solutions

X∗ = {x ∈ F|f (x) ⩽ f (y), ∀y ∈ F} and f (x∗) = f ∗, ∀x∗ ∈ X∗.

Probability mass function on F

pλ(x) =
e−λf (x)∑
y∈F e−λf (y)

, λ > 0.
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Simulated annealing

pλ(x) =
e−λf (x)∑
y∈F e−λf (y)

▶ Equivalently

pλ(x) =
eλ(f

∗−f (x))∑
y∈F eλ(f ∗−f (y))

▶ As f ∗ − f (x) ⩽ 0, when λ → ∞, we have

lim
λ→∞ pλ(x) =

δ(x ∈ X∗)

|X∗|
,

where

δ(x ∈ X∗) =

{
1 if x ∈ X∗

0 otherwise.
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Example

F = {1, 2, 3}, f (F) = {0, 1, 0}.

pλ(1) =
1

2+ e−λ
,

pλ(2) =
e−λ

2+ e−λ
,

pλ(3) =
1

2+ e−λ
.
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Example

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

λ

p λ

pλ(1) = pλ(3)
pλ(2)
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Simulated annealing

▶ If λ is large,

▶ we generate a Markov chain with stationary distribution pλ(x).

▶ The mass is concentrated on optimal solutions.

▶ As the normalizing constant is not needed, only eλ(f
∗−f (x)) is used.

▶ Construction of the Markov process through the concept of neighborhood.

▶ A neighbor y of x is obtained by simple modifications of x .

▶ The Markov process will proceed from neighbors to neighbors.

▶ The neighborhood structure must be designed such that the chain is
irreducible, that is the whole space F must be covered.

▶ It must be designed also such that the size of the neighborhood is
reasonably small.
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Neighborhood

Metropolis-Hastings

▶ Denote N(x) the set of neighbors of x .

▶ Define a Markov process where the next state is a randomly drawn neighbor.

▶ Transition probability:

Qxy =
1

|N(x)|

▶ Metropolis Hastings:

αxy = min

(
p(y)Qyx

p(x)Qxy
, 1

)
= min

(
e−λf (y)|N(x)|

e−λf (x)|N(y)|
, 1

)
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Neighborhood

Notes
▶ The neighborhood structure can always be arranged so that each vector has

the same number of neighbors. In this case,

αxy = min

(
e−λf (y)

e−λf (x)
, 1

)
▶ If y is better than x , the next state is automatically accepted.

▶ Otherwise, it is accepted with a probability that depends on λ.

▶ If λ is high, the probability is small.

▶ When λ is small, it is easy to escape from local optima.
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Heuristic

Issue
▶ The number of iterations needed to reach a stationary state and draw an

optimal solution may exceed the number of feasible solutions in the set.

▶ The acceptance probability is very small.

▶ Therefore, a complete enumeration works better.

▶ The method is used as a heuristic.
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Takeaways

Core ideas
▶ MCMC draws from a target π(x) ∝ b(x) without computing normalizing

constants.

▶ Metropolis–Hastings: propose with q(· | x), correct with an acceptance
probability.

▶ Gibbs sampling: special case where proposals are always accepted.

Practice
▶ Tuning matters (step size, proposal design).

▶ Diagnose: warm-up, mixing, autocorrelation, R̂ , ESS.

▶ Use draws for expectations and posterior predictive quantities.
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Markov Chains

Andrey Markov, 1856–1922, Russian mathematician.
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Markov Chains: glossary

Stochastic process
Xt , t = 0, 1, . . . ,, collection of r.v. with same support, or state space
{1, . . . , i , . . . , J}.

Markov process: (short memory)

Pr(Xt = i |X0, . . . ,Xt−1) = Pr(Xt = i |Xt−1)

Homogeneous Markov process

Pr(Xt = j |Xt−1 = i) = Pr(Xt+k = j |Xt−1+k = i) = Pij ∀t ⩾ 1, k ⩾ 0.
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Markov Chains

Transition matrix

P ∈ RJ×J .

Properties:
J∑

j=1

Pij = 1, i = 1, . . . , J , Pij ⩾ 0, ∀i , j ,

Ergodicity

▶ If state j can be reached from state i with non zero probability, and i from j ,
we say that i communicates with j .

▶ Two states that communicate belong to the same class.

▶ A Markov chain is irreducible or ergodic if it contains only one class.

▶ With an ergodic chain, it is possible to go to every state from any state.

107 / 125



Markov Chains

Aperiodic

▶ P t
ij is the probability that the process reaches state j from i after t steps.

▶ Consider all t such that P t
ii > 0. The largest common divisor d is called the

period of state i .

▶ A state with period 1 is aperiodic.

▶ If Pii > 0, state i is aperiodic.

▶ The period is the same for all states in the same class.

▶ Therefore, if the chain is irreducible, if one state is aperiodic, they all are.
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A periodic chain

1

2 3

45

1
2

1
2

1
3

2
3

1

1
2

1
2

1

P =


0 1

2
0 1

2
0

0 0 1
3

0 2
3

1 0 0 0 0
0 0 1

2
0 1

2

1 0 0 0 0

 , d = 3.

P t
ii > 0 for t = 3, 6, 9, 12, 15 . . .
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Another periodic chain

1 2

3 4

5 6

1

11
1
2

1
21

1

P =


0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1

2
0 0 1

2

0 0 1 0 0 0
0 0 0 0 1 0

 , d = 2.

P t
ii > 0 for t = 4, 6, 8, 10, 12, . . .
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An aperiodic chain

1 2

3 4

5 6

1

11
1
3

1
3

1
3

1

1

P =


0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
1
3

0 1
3

0 0 1
3

0 0 1 0 0 0
0 0 0 0 1 0

 , d = 1.

P t
ii > 0 for t = 3, 4, 6, 7, 8, 9, 10, 11, 12 . . .

111 / 125



Aperiodic chain

An equivalent definition
An irreducible Markov chain is said to be aperiodic if for some t ⩾ 0 and some
state i , we have

Pr(Xt = i |X0 = i) > 0

and
Pr(Xt+1 = i |X0 = i) > 0
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Intuition

Oscillation

P =

(
0 1
1 0

)
The chain will not “converge” to something stable.
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Markov Chains

Stationary probabilities

Pr(j) =
J∑

i=1

Pr(j |i)Pr(i)

▶ Stationary probabilities: unique solution of the system

πj =

J∑
i=1

Pijπi , ∀j = 1, . . . , J . (1)

J∑
j=1

πj = 1.

▶ Solution exists for any irreducible chain.
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Example

▶ A machine can be in 4 states with respect to wear
▶ perfect condition,
▶ partially damaged,
▶ seriously damaged,
▶ completely useless.

▶ The degradation process can be modeled by an irreducible aperiodic
homogeneous Markov process, with the following transition matrix:

P =


0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0


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Example

Stationary distribution:
(
5
8
, 1
4
, 3
32
, 1
32

)
(
5

8
,
1

4
,
3

32
,
1

32

)
0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0

 =

(
5

8
,
1

4
,
3

32
,
1

32

)

▶ Machine in perfect condition 5 days out of 8, in average.

▶ Repair occurs in average every 32 days

From now on: Markov process = irreducible aperiodic homogeneous Markov
process

117 / 125



Markov Chains

Detailed balance equations
Consider the following system of equations:

xiPij = xjPji , i ̸= j ,
J∑

i=1

xi = 1 (2)

We sum over i :
J∑

i=1

xiPij = xj

J∑
i=1

Pji = xj .

If (2) has a solution, it is also a solution of (1). As π is the unique solution of (1)
then x = π.

πiPij = πjPji , i ̸= j

The chain is said time reversible

118 / 125



Stationary distributions

Property of irreducible aperiodic Markov chains

πj = lim
t→∞Pr(Xt = j) j = 1, . . . , J .

Ergodicity

▶ Let f be any function on the state space.

▶ Then, with probability 1,

lim
T→∞

1

T

T∑
t=1

f (Xt) =

J∑
j=1

πj f (j).

▶ Computing the expectation of a function of the stationary states is the same
as to take the average of the values along a trajectory of the process.
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Example: T = 20
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Example: T = 100
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Example: T = 1000
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Example: T = 10000
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A periodic example

It does not work for periodic chains

P =

(
0 1
1 0

)
Pr(Xt = 1) =

{
1 if t is odd
0 if t is even

lim
t→∞Pr(Xt = 1) does not exist

Stationary distribution

π =

(
0.5
0.5

)
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Python code

def lognormpdf(x,mu=None,S=None):

""" log of gaussian pdf of x, when x ~ N(mu,sigma) """

nx = x.size

if mu is None:

mu = np.array([0]*nx)

if S is None:

S = np.identity(nx)

norm_coeff = nx*np.log(2*np.pi)+np.linalg.slogdet(S)[1]

err = x-mu

if (sp.issparse(S)):

numerator = spln.spsolve(S, err).T.dot(err)

else:

numerator = np.linalg.solve(S, err).T.dot(err)

return -0.5*(norm_coeff+numerator)
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