
Optimization and Simulation
Variance reduction

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering

Ecole Polytechnique Fédérale de Lausanne

1 / 51



Simulation runs and random inputs
Random inputs
A simulation run uses random numbers, typically

▶ uniform draws: Ur ,1, . . . ,Ur ,m ∼ U(0, 1),

▶ normal draws: ξr ,1, . . . , ξr ,k ∼ N(0, 1),

all independent.

Simulation output
The output of run r is obtained by a deterministic function

Xr = h(Ur ,1, . . . ,Ur ,m, ξr ,1, . . . , ξr ,k).

Repeating the simulation produces i.i.d. draws

X1, . . . ,XR with E[Xr ] = θ.
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What is variance reduction?

Baseline simulation
Using the function h, repeated runs produce i.i.d. outputs

X1, . . . ,XR , E[Xr ] = θ,

Variance reduction
Variance reduction modifies the construction of the output by using another
function h̃, applied to the same types of random inputs:

X̃r = h̃(Ur ,1, . . . ,Ur ,m, ξr ,1, . . . , ξr ,k).
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What is variance reduction?

Variance reduction
The resulting outputs

X̃1, . . . , X̃R

are still i.i.d., satisfy

E[X̃r ] = θ, Var(X̃r) < Var(Xr).
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Estimating the mean by simulation

Estimator
We estimate

θ = E[Xr ]

using the sample mean

θ̂R =
1

R

R∑
r=1

Xr ,

or

θ̃R =
1

R

R∑
r=1

X̃r .
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Estimating the mean by simulation

Precision (bootstrap lecture)
If X1, . . . ,XR are i.i.d., then

E
[
(θ̂R − θ)2

]
=

Var(Xr)

R
.

The typical estimation error is therefore of order√
Var(Xr)

R
.
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Why variance reduction is useful

Baseline vs variance-reduced simulation

E
[
(θ̂R − θ)2

]
=

Var(Xr)

R
; E

[
(θ̃R − θ)2

]
=

Var(X̃r)

R
.

Key consequence
Since

Var(X̃r) < Var(Xr),

the variance-reduced estimator has a smaller mean square error for the same
number of simulation runs R .
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Outline

Anthitetic draws

Control variates

Other techniques

Beyond the mean
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Antithetic draws

Intuition
Instead of simulating two independent scenarios, we simulate two opposite
scenarios so that their errors tend to cancel.
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Example

Use simulation to compute

I =

∫ 1

0

ex dx

We know the solution: e − 1 = 1.7183

Simulation: consider draws two by two

▶ Let r1,. . . ,rR be independent draws from U(0, 1).

▶ Let s1,. . . ,sR be independent draws from U(0, 1).

I ≈ 1

2R

(
R∑
i=1

eri +
R∑
i=1

esi

)
=

1

R

R∑
i=1

eri + esi

2
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Example

Simulation: consider draws two by two

▶ Use R = 10 ′000 (that is, a total of 20’000 draws)

▶ Mean over R draws from (eri + esi )/2: 1.720,variance: 0.123.
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Example

Now, use half the number of draws
▶ Idea: if X ∼ U(0, 1), then (1− X ) ∼ U(0, 1)

▶ Let r1,. . . ,rR be independent draws from U(0, 1).

I ≈ 1

R

R∑
i=1

eri + e1−ri

2

▶ Use R = 10 ′000

▶ Mean over R draws of (eri + e1−ri )/2: 1.7183,variance: 0.00388.

▶ Compared to: mean of (eri + esi )/2: 1.720,variance: 0.123.
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Antithetic draws: h and h̃

Baseline simulation
For one simulation run r , generate two independent uniforms

Ur ,1,Ur ,2 ∼ U(0, 1),

and define

Xr = h(Ur ,1,Ur ,2) =
eUr ,1 + eUr ,2

2
.

The outputs X1, . . . ,XR are i.i.d.
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Antithetic draws: h and h̃

Antithetic construction
For one simulation run r , generate a single uniform

Ur ∼ U(0, 1),

and define

X̃r = h̃(Ur) =
eUr + e1−Ur

2
.

The outputs X̃1, . . . , X̃R are also i.i.d.
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Example
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Antithetic draws

▶ Let X1 and X2 i.i.d. r.v. with mean θ.

▶ Then

Var

(
X1 + X2

2

)
=

1

4
(Var(X1) + Var(X2) + 2Cov(X1,X2)) .

▶ If X1 and X2 are independent, then Cov(X1,X2) = 0.

▶ If X1 and X2 are negatively correlated, then Cov(X1,X2) < 0, and the
variance is reduced.
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Back to the example

Independent draws

▶ X1 = eU , X2 = eU

Var(X1) = Var(X2) = E[e2U ] − E[eU ]2

=

∫ 1

0

e2x dx − (e − 1)2

= e2−1
2

− (e − 1)2

= 0.2420

Cov(X1,X2) = 0

Var

(
X1 + X2

2

)
=

1

4
(0.2420+ 0.2420)) = 0.1210
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Back to the example

Antithetic draws
▶ X1 = eU , X2 = e1−U

Var(X1) = Var(X2) = 0.2420

Cov(X1,X2) = E[eUe1−U ] − E [eU ]E [e1−U ]
= e − (e − 1)(e − 1)
= −0.2342

Var

(
X1 + X2

2

)
=

1

4
(0.2420+ 0.2420− 2 0.2342)) = 0.0039
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Antithetic draws: generalization

▶ Suppose that
X1 = h(U1, . . . ,Um),

where U1, . . .Um are i.i.d. U(0, 1).

▶ Define
X2 = h(1− U1, . . . , 1− Um).

▶ X2 has the same distribution as X1

▶ If h is monotonic in each of its coordinates, then X1 and X2 are negatively
correlated.

▶ If h is not monotonic, there is no guarantee that the variance will be reduced.

19 / 51



Another example

I =

∫ 1

0

(
x −

1

2

)2

dx

▶ Antithetic draws:

X1 =

(
U −

1

2

)2

, X2 =

(
(1− U) −

1

2

)2

▶ The covariance is positive:

Cov(X1,X2) =
1

180
> 0.

▶ The variance will therefore be (slightly) increased!
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Another example
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Another example
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Another example
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Antithetic draws: practical rule
Core idea
Applying a simple symmetry to the underlying random inputs.

Most common cases
▶ Uniform draws If U ∼ U(0, 1), the antithetic draw is

Uanti = 1− U .

▶ Normal draws If ξ ∼ N(0, 1), the antithetic draw is

ξanti = −ξ.

Key property
In both cases, the antithetic draw has the same marginal distribution as the
original draw, but is perfectly negatively correlated with it.
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Outline

Anthitetic draws
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Control variates

Motivation
Suppose the simulator produces an output X whose mean we want, but also
another output Y :

▶ strongly correlated with X ,

▶ whose expectation E[Y ] = µ is known exactly.

Can we exploit this information to reduce variance?
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Control variates: h and h̃

Simulation output
For one simulation run r , the simulator produces

(Xr ,Yr) = h(Ur ,1, . . . ,Ur ,m, ξr ,1, . . . , ξr ,k),

where
E[Xr ] = θ, E[Yr ] = µ (known).
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Control variates: h and h̃

Variance-reduced output
Using the same run, define

X̃r = h̃(Xr ,Yr) = Xr + c (Yr − µ).

For any constant c ,
E[X̃r ] = θ.
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Control variates

▶ We use simulation to estimate θ = E[X ], where X is an output of the
simulation.

▶ Let Y be another output of the simulation, such that we know E[Y ] = µ.

▶ We consider the quantity:

Z = X + c(Y − µ).

▶ By construction, E[Z ] = E[X ].

▶ Its variance is

Var(Z ) = Var(X + cY ) = Var(X ) + c2 Var(Y ) + 2c Cov(X ,Y ).

▶ Find c such that Var(Z ) is minimum.
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Control variates
▶ First derivative:

2c Var(Y ) + 2Cov(X ,Y ).

▶ Zero if

c∗ = −
Cov(X ,Y )

Var(Y )
.

▶ Second derivative:
2 Var(Y ) > 0.

▶ We use

Z ∗ = X −
Cov(X ,Y )

Var(Y )
(Y − µ).

▶ Its variance

Var(Z ∗) = Var(X ) −
Cov(X ,Y )2

Var(Y )
⩽ Var(X ).
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Control variates

In practice...

▶ Cov(X ,Y ) and Var(Y ) are usually not known.

▶ We can use their sample estimates:

Ĉov(X ,Y ) =
1

n − 1

R∑
r=1

(Xr − X̄ )(Yr − Ȳ ),

and

V̂ar(Y ) =
1

n − 1

R∑
r=1

(Yr − Ȳ )2.
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Control variates
In practice...

▶ Alternatively, use linear regression

X = aY + b + ε

where ε ∼ N(0,σ2).

▶ The least square estimators of a and b are

â =
Ĉov(X ,Y )

V̂ar(Y )
=

∑R
r=1(Xr − X̄ )(Yr − Ȳ )∑R

r=1(Yr − Ȳ )2

b̂ = X̄ − âȲ .

▶ Therefore
c∗ = −â. 32 / 51



Control variates

▶ Moreover,
b̂ + âµ = X̄ − âȲ + âµ

= X̄ − â(Ȳ − µ)
= X̄ + c∗(Ȳ − µ)

= θ̂.

▶ Therefore, the control variate estimate θ̂ of θ is obtained by the estimated
linear model, evaluated at µ.
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Back to the example

▶ Use simulation to compute I =

∫ 1

0

ex dx .

▶ X = eU .

▶ Y = U , E[Y ] = 1/2, Var(Y ) = 1/12.

▶ Cov(X ,Y ) = (3− e)/2 ≈ 0.14.

▶ Therefore, the best c is

c∗ = −
Cov(X ,Y )

Var(Y )
= −6(3− e) ≈ −1.69.

▶ Test with R = 10 ′000.

▶ Result of the regression: â = 1.6893, b̂ = 0.8734.

▶ Estimate: b̂ + â/2 = 1.7180, Variance: 0.003847 (compared to 0.24).
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Back to the example

1 1.5 1.72 2 2.5
0

500

1,000

1,500
F
re
qu

en
cy

No control
Control

35 / 51



Satellite simulation

Variables
▶ X : average time spent by the customers in the bar.

▶ Y : average service time.
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Satellite simulation: one run
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Satellite simulation

True value of E[Y ]

▶ The average service time µ = 0.2 is known.

▶ Therefore,
E[Y ] = µ = 0.2.

Important
Do not use simulated values to calculate this quantity.
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Satellite simulation:

Scenario: closure: 100,inter-arrival time: 1

R Service time E[X ] E[Z ] Var[X ] Var[Z ]
0 1000 0.1 0.1115 0.1111 0.0001676 3.129e-05
1 10000 0.1 0.1107 0.1111 0.0001857 3.153e-05
2 100000 0.1 0.1110 0.1110 0.0001827 3.111e-05
3 1000 1 7.665 7.771 21.91 12.74
4 10000 1 7.820 7.800 22.23 13.66
5 100000 1 7.780 7.773 22.04 13.69
6 1000 3 102.3 102.2 509.1 275.5
7 10000 3 102.9 102.9 532.5 302.4
8 100000 3 103.0 102.9 526.2 303.2
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Comments

▶ The true value µ of the mean of the control variable Y must be available.

▶ Using the sample mean does not work.

▶ The higher the correlation between X and Y , the better.
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Variance reductions techniques

Other variance reduction techniques

▶ Conditioning — analytically remove randomness

▶ Stratified sampling — enforce balanced exploration

▶ Importance sampling — focus on rare but important events

▶ Draw recycling — reuse randomness across scenarios

Takeaway
All these methods exploit structure or correlation to reduce variance more
efficiently than brute-force simulation.

In general
Correlation helps!
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Scope of variance reduction

What variance reduction guarantees
Variance reduction methods are designed to preserve E[X ] and to reduce the
variance of estimators of the form

θ̂R =
1

R

R∑
r=1

Xr .

Implicit limitation
These guarantees rely on:

▶ linearity of expectation,

▶ estimators based on sample averages.
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Other indicators than the mean

Examples
In practice, we often want to estimate:

▶ quantiles (e.g. median, 95% percentile),

▶ probabilities (e.g. P(X > c)),

▶ extrema (maxima, minima),

▶ risk measures.

Key difference
These indicators are nonlinear functions of the distribution of X .

45 / 51



Pitfall 1: bias can be introduced

Key fact
Variance reduction preserves E[X ], but does not preserve

E[T (F̂R)]

for a nonlinear statistic T .

Reason
In general,

E[T (F̂R)] ̸= T (E[F̂R ]).

Expectation does not commute with nonlinear transformations.

Consequence
A variance-reduced estimator of a quantile or probability may be biased.
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Pitfall 2: variance may not decrease

Mean vs nonlinear indicators
Reducing Var(Xr) does not imply that the variance of a nonlinear estimator (e.g.
a quantile) is reduced.

Why

▶ Variance reduction reshapes the empirical distribution.

▶ Nonlinear indicators depend on order, tails, or ranks.

▶ Improved balance in one region may worsen accuracy elsewhere.

Conclusion
There is no universal variance reduction guarantee for indicators other than
the mean.
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What remains valid

Important clarification
Variance reduction methods:

▶ do not invalidate simulation,

▶ do not break independence across runs,

▶ do not change the target distribution.

What changes
They modify the finite-sample behavior of estimators built from the simulated
outputs.
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Practical recommendations (1)

Always ask first

▶ What is the indicator of interest?

▶ Is it linear (mean) or nonlinear (quantile, probability)?

Rule of thumb
▶ Mean ⇒ variance reduction is theoretically safe.

▶ Other indicators ⇒ proceed with caution.
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Practical recommendations (2)

No closed-form guarantee
For nonlinear indicators, analytical variance or bias formulas are rarely available.

Recommended approach

▶ Use variance reduction as a candidate improvement.

▶ Assess its effect empirically:
▶ variance,
▶ bias,
▶ mean square error.

Tool
Bootstrap resampling provides a natural assessment framework.
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Final takeaway

Big picture

▶ Variance reduction is a powerful tool for estimating means.

▶ For other indicators, it is neither universally good nor bad.

▶ Its impact must be evaluated, not assumed.

Good practice

Variance reduction + bootstrap assessment

51 / 51


	Anthitetic draws
	Control variates
	Other techniques
	Beyond the mean

