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Simulation runs and random inputs

Random inputs

A simulation run uses random numbers, typically
» uniform draws: U, 1, ..., U.m~U(0,1),
» normal draws: &,1,..., &« ~ N(0,1),

all independent.

Simulation output
The output of run r is obtained by a deterministic function

Xr — h(UI',].l LR | Ur,mv Eyr,ly LR | Evr,k)'
Repeating the simulation produces i.i.d. draws

X1,...,Xg with E[X,] =6.
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What is variance reduction?

Baseline simulation
Using the function h, repeated runs produce i.i.d. outputs

X1, XR, E[X,] =0,

Variance reduction
Variance reduction modifies the construction of the output by using another
function h, applied to the same types of random inputs:

Xr — F’(Ur,lv ceey Ur,mv E»r,ly Ceey E»r,k)-
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What is variance reduction?

Variance reduction
The resulting outputs

X1, ..., XR

are still i.i.d., satisfy

E[(X,] = 0, Var(X,) < Var(X,).
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Estimating the mean by simulation

Estimator
We estimate
0 =E[X/]
using the sample mean
R
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Or =7 ; X,
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Estimating the mean by simulation

Precision (bootstrap lecture)
If Xi,..., Xgr are i.i.d., then

E[(é"’ B 9)2} R

The typical estimation error is therefore of order

Var(X,)
-

_ Var(X,)

6/51



Why variance reduction is useful

Baseline vs variance-reduced simulation

A Var(X, < Var(X,
]: arf(? ); ]E[(GR—G)2]= ar/(? ).

Key consequence
Since

Var(X,) < Var(X,),

the variance-reduced estimator has a smaller mean square error for the same
number of simulation runs R.
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Outline

Anthitetic draws
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Antithetic draws

Intuition
Instead of simulating two independent scenarios, we simulate two opposite
scenarios so that their errors tend to cancel.
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Example
Use simulation to compute
1
| = J e dx

0
We know the solution: e —1 =1.7183

Simulation: consider draws two by two

» Let ry,...,rr be independent draws from U(0, 1).
» Let s1,...,57 be independent draws from U(0, 1).

1 R ) R i 1 & e s
lzﬁ(Zle'%—Zle'):E.Zle 26
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Example

Simulation: consider draws two by two

» Use R = 10000 (that is, a total of 20’000 draws)
» Mean over R draws from (e"i + e®)/2: 1.720,variance: 0.123.
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Example

Now, use half the number of draws
> Idea: if X ~ U(0, 1), then (1 — X) ~ U(0,1)
» Let ry,...,rr be independent draws from U(0, 1).

R
1 e + el
I~=y &1€¢
S
» Use R = 10’000

» Mean over R draws of (e + e'~")/2: 1.7183,variance: 0.00388.
» Compared to: mean of (e 4 e%)/2: 1.720,variance: 0.123.
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Antithetic draws: h and h

Baseline simulation
For one simulation run r, generate two independent uniforms

Ur,lv Ur,2 ~ U(O, 1):

and define
eUr,l + eUr,Z

Xr = h(Ur,ln Ur,2) = 9

The outputs Xy, ..., Xr are i.i.d.
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Antithetic draws: h and h

Antithetic construction
For one simulation run r, generate a single uniform

U, ~U(0,1),

and define U U
X =hU,) = %

The outputs )~(1, . ,)~(R are also i.i.d.
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Antithetic draws

> Let X; and X, i.i.d. r.v. with mean 0.
» Then

X; + X
Var( 11+ %

; ) _1 (Var(X1) + Var(X;) + 2 Cov(X, X2)) .

T4

» If X; and X, are independent, then Cov(X;, X5) = 0.

» If X; and X, are negatively correlated, then Cov(X7, X5) < 0, and the
variance is reduced.
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Back to the example

Independent draws
> XlzeU,XzzeU
Var(X;) = Var(Xo) = E[e?Y] — E[eY]?

2
= 0.2420

Cov(Xy, X2) =0

X 4%\ 1
Var( “2L 2) = 4 (0.2420+0.2420)) = 0.1210

17/51



Back to the example

Antithetic draws
> Xl = eU, X2 = el_U
Var(X1) = Var(X;) = 0.2420

Cov(Xi, Xo) = EleVel V] — E[eV]E[el Y]
— e — (e—1)(e—1)
=  —0.2342

X 4%\ 1
Var ( ! ;L 2) = (0.2420 +0.2420 — 2 0.2342)) = 0.0039
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Antithetic draws: generalization

» Suppose that

where U, ... U, are i.i.d. U(0,1).
» Define
X2:h(]._U]_ ..... 1—Um)
» X, has the same distribution as X;

» If his monotonic in each of its coordinates, then X; and X, are negatively
correlated.

» If his not monotonic, there is no guarantee that the variance will be reduced.
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Another example

> Antithetic draws:

2 2
x1:<u—%) ,X2:<(1—U)—%>

» The covariance is positive:

1
COV(Xl,Xz) = ﬁ > 0.

» The variance will therefore be (slightly) increased!
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Another example
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Another example
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Another example
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Antithetic draws: practical rule

Core idea
Applying a simple symmetry to the underlying random inputs.

Most common cases
» Uniform draws If U ~ U(0, 1), the antithetic draw is

Ut =1-U.
» Normal draws If £ ~ N(0, 1), the antithetic draw is

E'anti — —E,

Key property
In both cases, the antithetic draw has the same marginal distribution as the
original draw, but is perfectly negatively correlated with it.
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Outline

Control variates
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Control variates

Motivation
Suppose the simulator produces an output X whose mean we want, but also

another output Y:

» strongly correlated with X,

» whose expectation E[Y] = w is known exactly.
Can we exploit this information to reduce variance?
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Control variates: h and h

Simulation output
For one simulation run r, the simulator produces

(er Yr) — h(Ur,ly Cey Ur,mr Evl’,lv Ceey Evl’,k)l

where
E[X,] =0, E[Y,] = u (known).
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Control variates: h and h

Variance-reduced output
Using the same run, define

X, =h(X,Y,)=X+c(Y,—p).

For any constant c, 5
E[X,] = 0.
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Control variates

» We use simulation to estimate 6 = E[X], where X is an output of the
simulation.

» Let Y be another output of the simulation, such that we know E[Y] = p.
» We consider the quantity:

Z=X+c(Y—u).

» By construction, E[Z] = E[X].

» Its variance is
Var(Z) = Var(X 4 ¢cY) = Var(X) + ¢* Var(Y) + 2c Cov(X, Y).
» Find ¢ such that Var(Z) is minimum.
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Control variates

» First derivative:
2cVar(Y) +2Cov(X,Y).

» Zero if

. Cov(X,Y)

© = Var(Y)
» Second derivative:

2Var(Y) > 0.
» We use Cov(X, Y)
. ov(X,
=Xy YW
» Its variance
Cov(X, Y)?
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Control variates

In practice...
» Cov(X, Y) and Var(Y) are usually not known.

» We can use their sample estimates:

R
Cov(X, ¥) = = 3 (X~ X)(Y, V),

n—1
r=1
and
_ 1 K _
Var(Y) = Y, —Y)?
(V)= g L %= Y)
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Control variates
In practice...

» Alternatively, use linear regression

X=aY¥Y+b+e

where ¢ ~ N(0, 02).

» The least square estimators of a and b are

Cov(X,Y) _ EF (X —X)(Y,—Y)

a = = R

\73\I’(Y) Zrzl(yr_ V)2

X — 3Y.

o
Il

» Therefore
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Control variates

> Moreover,
b+au = X—3Y+4u
X—34(Y—p)
= X+c(Y—u)
0.

» Therefore, the control variate estimate 0 of 0 is obtained by the estimated
linear model, evaluated at L.
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Back to the example

vvyyy

1

Use simulation to compute / = J e dx.
0

X =el.
Y =U, E[Y] =1/2, Var(Y) = 1/12.
Cov(X,Y)=(3—¢e)/2~0.14.

Therefore, the best c is

*

C —= —

Cov(X, ;/) =—6(3—e)~ —1.69.

Var(Y

» Test with R = 10'000.

v

Result of the regression: 4 = 1.6893, b =0.8734.

Estimate: b+ 4/2 = 1.7180, Variance: 0.003847 (compared to 0.24).
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Back to the example
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Satellite simulation

Variables
» X: average time spent by the customers in the bar.

» Y average service time.
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Satellite simulation: one run
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Satellite simulation

True value of E[Y]

» The average service time p = 0.2 is known.

» Therefore,
E[Y]=u=0.2.

Important

Do not use simulated values to calculate this quantity.
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Satellite simulation:

Scenario: closure: 100,inter-arrival time: 1

R Service time E[X] E[Z] Var[X] Var[Z]

0 1000 0.1 0.1115 0.1111 0.0001676 3.129e-05
1 10000 0.1 0.1107 0.1111 0.0001857 3.153e-05
2 100000 0.1 0.1110 0.1110 0.0001827 3.111e-05
3 1000 1 7665 7.771 21.91 12.74
4 10000 1 7.820 7.800 22.23 13.66
5 100000 1 7780 7.773 22.04 13.69
6 1000 3 1023 102.2 509.1 275.5
7 10000 3 1029 1029 532.5 302.4
8 100000 3 103.0 1029 526.2 303.2
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Comments

» The true value pu of the mean of the control variable Y must be available.
» Using the sample mean does not work.
» The higher the correlation between X and Y, the better.
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Outline

Other techniques
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Variance reductions techniques

Other variance reduction techniques

» Conditioning — analytically remove randomness
» Stratified sampling — enforce balanced exploration
» Importance sampling — focus on rare but important events

» Draw recycling — reuse randomness across scenarios

Takeaway

All these methods exploit structure or correlation to reduce variance more
efficiently than brute-force simulation.

In general
Correlation helps!
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Outline

Beyond the mean
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Scope of variance reduction

What variance reduction guarantees

Variance reduction methods are designed to preserve E[X] and to reduce the
variance of estimators of the form

O
eR - ﬁZXr
r=1

Implicit limitation
These guarantees rely on:
» linearity of expectation,

» estimators based on sample averages.
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Other indicators than the mean

Examples

In practice, we often want to estimate:
» quantiles (e.g. median, 95% percentile),
» probabilities (e.g. P(X > ¢)),
> extrema (maxima, minima),

» risk measures.

Key difference

These indicators are nonlinear functions of the distribution of X.
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Pitfall 1: bias can be introduced
Key fact

Variance reduction preserves E[X], but does not preserve
E[T(Fr)]

for a nonlinear statistic T.

Reason

In general, A A
E[T(Fr)] # T(E[Fg]).

Expectation does not commute with nonlinear transformations.

Consequence
A variance-reduced estimator of a quantile or probability may be biased.
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Pitfall 2: variance may not decrease

Mean vs nonlinear indicators
Reducing Var(X;) does not imply that the variance of a nonlinear estimator (e.g.

a quantile) is reduced.
Why
» Variance reduction reshapes the empirical distribution.

» Nonlinear indicators depend on order, tails, or ranks.

» Improved balance in one region may worsen accuracy elsewhere.

Conclusion
There is no universal variance reduction guarantee for indicators other than

the mean.
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What remains valid

Important clarification

Variance reduction methods:
» do not invalidate simulation,
» do not break independence across runs,
» do not change the target distribution.

What changes
They modify the finite-sample behavior of estimators built from the simulated
outputs.
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Practical recommendations (1)

Always ask first
» What is the indicator of interest?

» s it linear (mean) or nonlinear (quantile, probability)?

Rule of thumb
» Mean = variance reduction is theoretically safe.

» Other indicators = proceed with caution.
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Practical recommendations (2)

No closed-form guarantee
For nonlinear indicators, analytical variance or bias formulas are rarely available.

Recommended approach

» Use variance reduction as a candidate improvement.
» Assess its effect empirically:

» variance,
» bias,
» mean square error.

Tool

Bootstrap resampling provides a natural assessment framework.
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Final takeaway

Big picture
» Variance reduction is a powerful tool for estimating means.
» For other indicators, it is neither universally good nor bad.

» Its impact must be evaluated, not assumed.

Good practice

Variance reduction + bootstrap assessment
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