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Introduction

▶ The outputs of the simulator are random variables.

▶ Running the simulator provides one realization of these r.v.

▶ We have no access to the pdf or CDF of these r.v.

▶ Well... this is actually why we rely on simulation.

▶ How to derive statistics about a r.v. when only instances are known?

▶ How to measure the quality of this statistic?
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Sample mean and variance
▶ Consider X1, . . . , Xn i.i.d. r.v.
▶ E[Xi ] = µ, Var(Xi) = σ2.

The sample mean

X̄ =
1

n

n∑
i=1

Xi

is an unbiased estimate of the population mean µ, as E[X̄ ] = µ.

The sample variance

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2

is an unbiased estimator of the population variance σ2, as E[S2] = σ2. (see
proof: Ross, chapter 7) 3 / 26



Sample mean and variance

Recursive computation (Welford’s algorithm)

1. Initialize: X̄1 = X1, M2 = 0.

2. For k = 2, . . . , n:

δ = Xk − X̄k−1, X̄k = X̄k−1 +
δ

k
,

M2 = M2 + δ(Xk − X̄k).

3. Sample variance:

S2 =
M2

n − 1
.
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Mean Square Error

▶ Consider X1, . . . , Xn i.i.d. r.v. with CDF F .

▶ Consider a parameter θ(F ) of the distribution (mean, quantile, mode, etc.)

▶ Consider θ̂(X1, . . . ,Xn) an estimator of θ(F ).

▶ The Mean Square Error of the estimator is defined as

MSE(F ) = EF

[(
θ̂(X1, . . . ,Xn) − θ(F )

)2]
,

where EF emphasizes that the expectation is taken under the assumption
that the r.v. all have distribution F .

▶ If F is unknown, it is not immediate to find an estimator of MSE.
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How many draws must be used?
▶ Let X a r.v. with mean θ and variance σ2.

▶ We want to estimate the mean θ of the simulated distribution.

▶ The estimator used is the sample mean: X̄ .

▶ The mean square error is

E[(X̄ − θ)2] =
σ2

n

▶ The sample mean X̄ is normally distributed with mean θ and variance σ2/n.

▶ So we can stop generating data when σ/
√
n is small.

▶ σ2 is approximated by the sample variance S .

▶ Law of large numbers: at least 100 draws (say) should be used.

▶ See Ross p. 121 for details.
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How many draws are enough? — When theory applies

Analytical stopping rule
For the sample mean X̄ :

MSE(X̄ ) =
σ2

n

so precision improves at rate 1/
√
n.

Required assumptions

▶ Indicator is the sample mean

▶ Draws are i.i.d.

▶ Finite variance σ2

Takeaway
This gives a principled stopping rule — but only in this narrow setting.
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Beyond the mean: when theory breaks down

Typical simulation indicators

▶ Quantiles (e.g. 95% travel time)

▶ Maxima or tail probabilities

▶ Nonlinear performance metrics

Problem
▶ Closed-form MSE is unavailable

▶ Asymptotic approximations may be unreliable

▶ No universal rule for choosing n

Solution
Use simulation itself to assess estimator quality: bootstrapping.

8 / 26



Empirical distribution function

▶ Consider X1, . . . , Xn i.i.d. r.v. with CDF F .

▶ Consider a realization x1,. . . ,xn of these r.v.

▶ The empirical distribution function is defined as

Fe(x) =
1

n

n∑
i=1

I {xi ⩽ x},

where

I {xi ⩽ x} =

{
1 if xi ⩽ x ,
0 otherwise.

▶ CDF of a r.v. that can take any xi with equal probability.
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Empirical CDF

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

x

F
(x
)

Fe(x), n = 10
F (x)

10 / 26



Empirical CDF
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Empirical CDF
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From reality to data

Reality Data
Random variable X Xe

CDF F Fe

True parameter θ(F ) θ(Fe)
Sample X1, . . . ,Xn ∼ F X e

1 , . . . ,X
e
n ∼ Fe

Estimate θ̂(X1, . . . ,Xn) θ̂(X e
1 , . . . ,X

e
n )
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Mean Square Error

▶ We use the empirical distribution function Fe

▶ We can approximate

MSE(F ) = EF

[(
θ̂(X1, . . . ,Xn) − θ(F )

)2]
,

by

MSE(Fe) = EFe

[(
θ̂(X e

1 , . . . ,X
e
n ) − θ(Fe)

)2]
,

▶ θ(Fe) can be computed directly from the data (mean, variance, etc.)
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Mean Square Error

▶ We want to compute

MSE(Fe) = EFe

[(
θ̂(X e

1 , . . . ,X
e
n ) − θ(Fe)

)2]
,

▶ X e
i are r.v. that can take any xi with equal probability.

▶ Therefore,

MSE(Fe) =
1

nn

n∑
i1=1

· · ·
n∑

in=1

[(
θ̂(xi1 , . . . , xin) − θ(Fe)

)2]
,

▶ Clearly impossible to compute when n is large.

▶ Solution: simulation.
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Bootstrapping
▶ For r = 1, . . . ,R

▶ Draw x r1 ,. . . ,x
r
n from Fe , that is draw from the data:

1. Let s be a draw from U[0, 1]
2. Set j = floor(ns).
3. Return xj .

▶ Compute

Mr =
(
θ̂(x r1 , . . . , x

r
n) − θ(Fe)

)2
,

▶ Estimate of MSE(Fe) and, therefore, of MSE(F ):

1

R

R∑
r=1

Mr

▶ Typical value for R : 100.
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Bootstrap: simple example

▶ Data: 0.636, -0.643, 0.183, -1.67, 0.462

▶ Mean= -0.206

▶ MSE= E[(X̄ − θ)2] = S2/n= 0.1817

r θ̂ θ(Fe) MSE
1 -0.643 -0.643 -0.643 0.462 0.462 -0.201 -0.206 2.544e-05
2 -0.643 0.183 0.636 0.636 0.636 0.2896 -0.206 0.2456
3 -1.67 -1.67 0.183 0.462 0.636 -0.411 -0.206 0.04204
4 -1.67 -0.643 0.183 0.183 0.636 -0.2617 -0.206 0.003105
5 -0.643 0.462 0.462 0.636 0.636 0.3105 -0.206 0.2667
6 -1.67 -1.67 0.183 0.183 0.183 -0.5573 -0.206 0.1234
7 -0.643 0.183 0.183 0.462 0.636 0.1642 -0.206 0.137
8 -1.67 -1.67 -0.643 0.183 0.183 -0.7225 -0.206 0.2667
9 0.183 0.462 0.462 0.636 0.636 0.4756 -0.206 0.4646

10 -0.643 0.183 0.183 0.462 0.636 0.1642 -0.206 0.137
0.1686
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Python code

def calculate_quantile(data: np.ndarray, q: float) -> float:

return float(np.quantile(data, q))

def bootstrap_sample(data):

return np.random.choice(data, size=len(data), replace=True)
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MSE for the percentile: Python code

def mean_squared_error_quantile(

data: np.ndarray,

q: float,

num_bootstrap: int = 100,

) -> tuple[float, float]:

true_quantile = calculate_quantile(data, q)

bootstrap_estimates = np.array(

[

calculate_quantile(bootstrap_sample(data), q)

for _ in range(num_bootstrap)

]

)

mse = float(np.mean((bootstrap_estimates - true_quantile) ** 2))

return true_quantile, mse
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Experiments

quantile_threshold = 0.975

MAX_SAMPLE_SIZE = 7

results = [

(10**power, mean_squared_error_quantile(

data[0 : 10**power],

q=quantile_threshold)

)

for power in range(2, MAX_SAMPLE_SIZE + 1)

]
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Results
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Bootstrap confidence intervals

Idea
Bootstrapping approximates the sampling distribution of an estimator θ̂.

Percentile method
▶ Generate bootstrap estimates θ̂1, . . . , θ̂R .

▶ A 95% confidence interval is given by the 2.5% and 97.5% quantiles of this
empirical distribution.

Remark
No parametric assumption on the distribution of θ̂ is required.
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Summary

▶ The number of draws is determined by the required precision.

▶ In some cases, the precision is derived from theoretical results.

▶ If not, rely on bootstrapping.

▶ Idea: use simulation to estimate the Mean Square Error.
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Appendix: MSE for the mean
▶ Consider X1, . . . , Xn i.i.d. r.v.
▶ Denote θ = E[Xi ] and σ2 = Var(Xi).
▶ Consider X̄ =

∑n
i=1 Xi/n.

▶ E[X̄ ] =
∑n

i=1 E[Xi ]/n = θ.
▶ MSE:

E[(X̄ − θ)2] = Var X̄

= Var

(
n∑

i=1

Xi/n

)

=

n∑
i=1

Var(Xi)/n
2

= σ2/n.
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Appendix: why Welford’s update is equivalent

Invariant
Define

M2,k =

k∑
i=1

(Xi − X̄k)
2 ⇒ S2

k =
M2,k

k − 1
.
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Appendix: why Welford’s update is equivalent
Let δk = Xk − X̄k−1 and X̄k = X̄k−1 + δk/k . Then

M2,k =

k−1∑
i=1

(Xi − X̄k)
2 + (Xk − X̄k)

2.

For i ⩽ k − 1, write Xi − X̄k = (Xi − X̄k−1) − (X̄k − X̄k−1) and use∑k−1
i=1 (Xi − X̄k−1) = 0 to obtain

k−1∑
i=1

(Xi − X̄k)
2 = M2,k−1 + (k − 1)(X̄k − X̄k−1)

2.

Also, Xk − X̄k = δk − (X̄k − X̄k−1) and X̄k − X̄k−1 = δk/k , hence

(k − 1)
(δk
k

)2
+
(
δk −

δk
k

)2
= δ2k

(
1−

1

k

)
= δk(Xk − X̄k).

Therefore,
M2,k = M2,k−1 + δk(Xk − X̄k),

which is exactly Welford’s update.
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