

Optimization and Simulation

Statistical analysis and bootstrapping

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

Introduction

- ▶ The outputs of the simulator are random variables.
- ▶ Running the simulator provides one realization of these r.v.
- ▶ We have no access to the pdf or CDF of these r.v.
- ▶ Well... this is actually why we rely on simulation.
- ▶ How to derive statistics about a r.v. when only instances are known?
- ▶ How to measure the quality of this statistic?

Sample mean and variance

- ▶ Consider X_1, \dots, X_n i.i.d. r.v.
- ▶ $E[X_i] = \mu$, $\text{Var}(X_i) = \sigma^2$.

The sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

is an unbiased estimate of the population mean μ , as $E[\bar{X}] = \mu$.

The sample variance

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

is an unbiased estimator of the population variance σ^2 , as $E[S^2] = \sigma^2$. (see proof: Ross, chapter 7)

Sample mean and variance

Recursive computation (Welford's algorithm)

1. Initialize: $\bar{X}_1 = X_1$, $M_2 = 0$.
2. For $k = 2, \dots, n$:

$$\delta = X_k - \bar{X}_{k-1}, \quad \bar{X}_k = \bar{X}_{k-1} + \frac{\delta}{k},$$

$$M_2 = M_2 + \delta(X_k - \bar{X}_k).$$

3. Sample variance:

$$S^2 = \frac{M_2}{n-1}.$$

Mean Square Error

- ▶ Consider X_1, \dots, X_n i.i.d. r.v. with CDF F .
- ▶ Consider a parameter $\theta(F)$ of the distribution (mean, quantile, mode, etc.)
- ▶ Consider $\hat{\theta}(X_1, \dots, X_n)$ an estimator of $\theta(F)$.
- ▶ The Mean Square Error of the estimator is defined as

$$\text{MSE}(F) = E_F \left[\left(\hat{\theta}(X_1, \dots, X_n) - \theta(F) \right)^2 \right],$$

where E_F emphasizes that the expectation is taken under the assumption that the r.v. all have distribution F .

- ▶ If F is unknown, it is not immediate to find an estimator of MSE.

How many draws must be used?

- ▶ Let X a r.v. with mean θ and variance σ^2 .
- ▶ We want to estimate the mean θ of the simulated distribution.
- ▶ The estimator used is the sample mean: \bar{X} .
- ▶ The mean square error is

$$E[(\bar{X} - \theta)^2] = \frac{\sigma^2}{n}$$

- ▶ The sample mean \bar{X} is normally distributed with mean θ and variance σ^2/n .
- ▶ So we can stop generating data when σ/\sqrt{n} is small.
- ▶ σ^2 is approximated by the sample variance S .
- ▶ Law of large numbers: at least 100 draws (say) should be used.
- ▶ See Ross p. 121 for details.

How many draws are enough? — When theory applies

Analytical stopping rule

For the sample mean \bar{X} :

$$\text{MSE}(\bar{X}) = \frac{\sigma^2}{n}$$

so precision improves at rate $1/\sqrt{n}$.

Required assumptions

- ▶ Indicator is the sample mean
- ▶ Draws are i.i.d.
- ▶ Finite variance σ^2

Takeaway

This gives a principled stopping rule — but only in this narrow setting.

Beyond the mean: when theory breaks down

Typical simulation indicators

- ▶ Quantiles (e.g. 95% travel time)
- ▶ Maxima or tail probabilities
- ▶ Nonlinear performance metrics

Problem

- ▶ Closed-form MSE is unavailable
- ▶ Asymptotic approximations may be unreliable
- ▶ No universal rule for choosing n

Solution

Use simulation itself to assess estimator quality: bootstrapping.

Empirical distribution function

- ▶ Consider X_1, \dots, X_n i.i.d. r.v. with CDF F .
- ▶ Consider a realization x_1, \dots, x_n of these r.v.
- ▶ The **empirical distribution function** is defined as

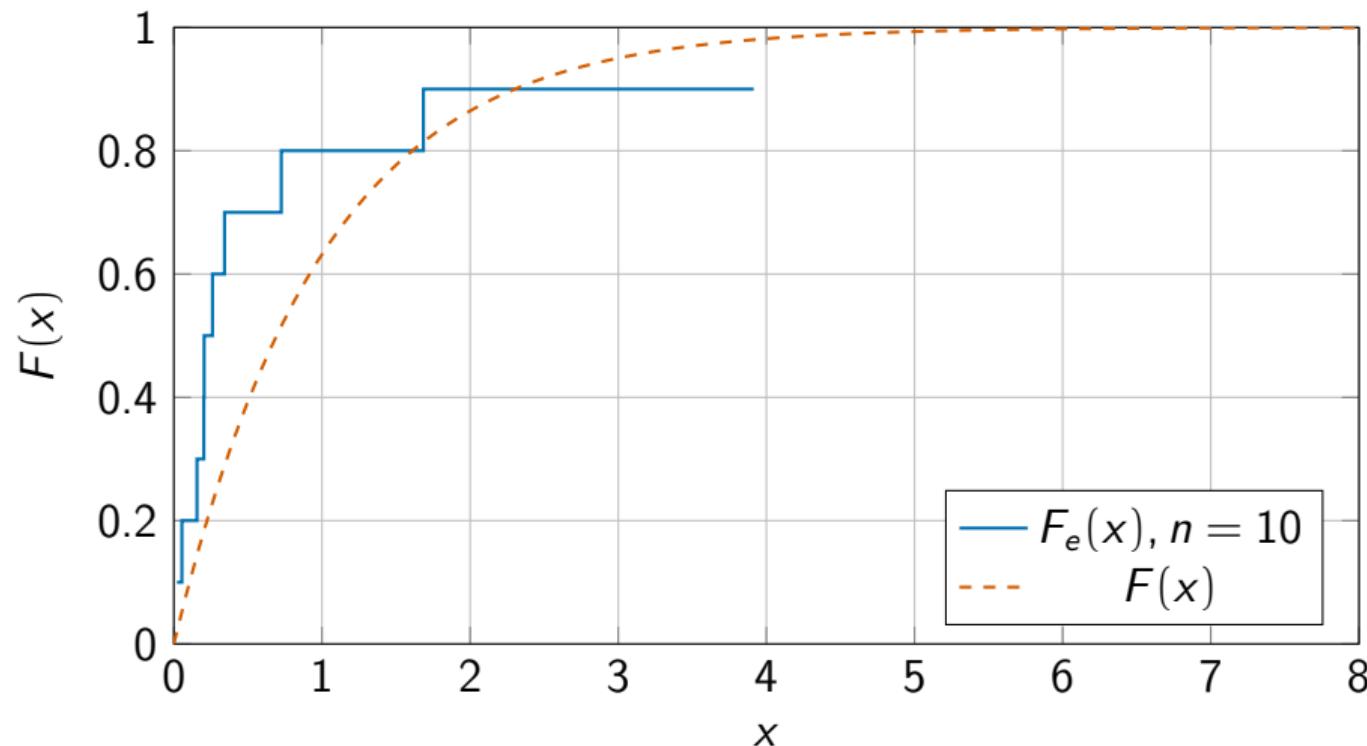
$$F_e(x) = \frac{1}{n} \sum_{i=1}^n I\{x_i \leq x\},$$

where

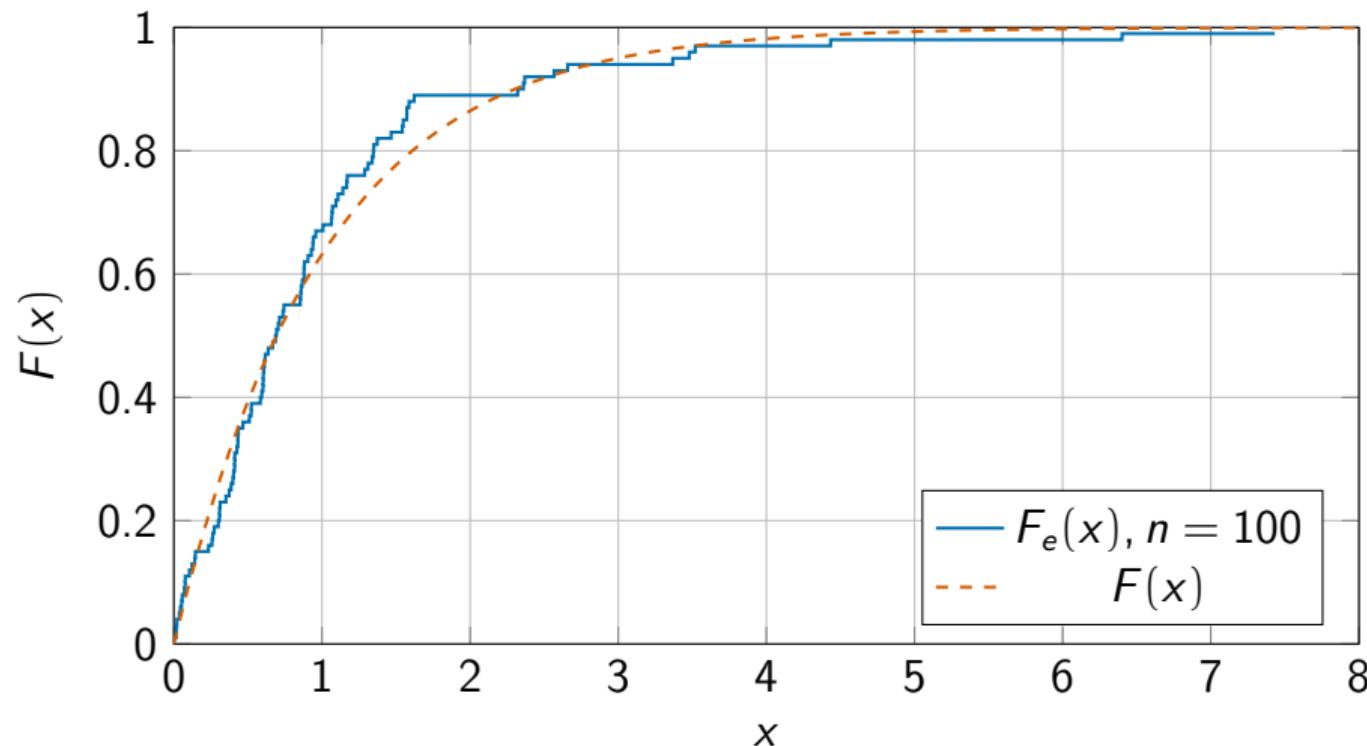
$$I\{x_i \leq x\} = \begin{cases} 1 & \text{if } x_i \leq x, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ CDF of a r.v. that can take any x_i with equal probability.

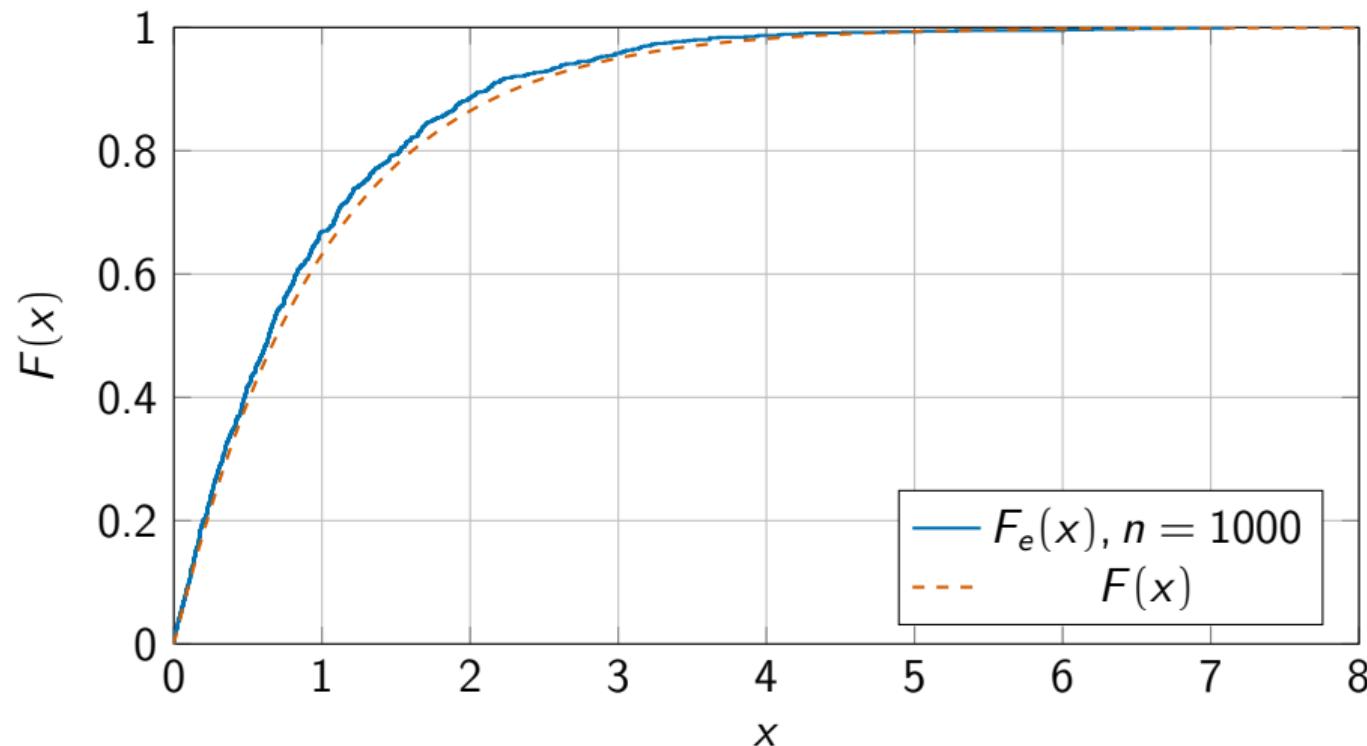
Empirical CDF



Empirical CDF



Empirical CDF



From reality to data

	Reality	Data
Random variable	X	X_e
CDF	F	F_e
True parameter	$\theta(F)$	$\theta(F_e)$
Sample	$X_1, \dots, X_n \sim F$	$X_1^e, \dots, X_n^e \sim F_e$
Estimate	$\hat{\theta}(X_1, \dots, X_n)$	$\hat{\theta}(X_1^e, \dots, X_n^e)$

Mean Square Error

- ▶ We use the empirical distribution function F_e
- ▶ We can approximate

$$\text{MSE}(F) = E_F \left[\left(\hat{\theta}(X_1, \dots, X_n) - \theta(F) \right)^2 \right],$$

by

$$\text{MSE}(F_e) = E_{F_e} \left[\left(\hat{\theta}(X_1^e, \dots, X_n^e) - \theta(F_e) \right)^2 \right],$$

- ▶ $\theta(F_e)$ can be computed directly from the data (mean, variance, etc.)

Mean Square Error

- We want to compute

$$\text{MSE}(F_e) = E_{F_e} \left[\left(\hat{\theta}(X_1^e, \dots, X_n^e) - \theta(F_e) \right)^2 \right],$$

- X_i^e are r.v. that can take any x_i with equal probability.
- Therefore,

$$\text{MSE}(F_e) = \frac{1}{n^n} \sum_{i_1=1}^n \cdots \sum_{i_n=1}^n \left[\left(\hat{\theta}(x_{i_1}, \dots, x_{i_n}) - \theta(F_e) \right)^2 \right],$$

- Clearly impossible to compute when n is large.
- Solution: simulation.

Bootstrapping

- ▶ For $r = 1, \dots, R$
- ▶ Draw x_1^r, \dots, x_n^r from F_e , that is draw from the data:
 1. Let s be a draw from $U[0, 1]$
 2. Set $j = \text{floor}(ns)$.
 3. Return x_j .
- ▶ Compute

$$M_r = \left(\widehat{\theta}(x_1^r, \dots, x_n^r) - \theta(F_e) \right)^2,$$

- ▶ Estimate of $\text{MSE}(F_e)$ and, therefore, of $\text{MSE}(F)$:

$$\frac{1}{R} \sum_{r=1}^R M_r$$

- ▶ Typical value for R : 100.

Bootstrap: simple example

- ▶ Data: 0.636, -0.643, 0.183, -1.67, 0.462
- ▶ Mean = -0.206
- ▶ $\text{MSE} = \text{E}[(\bar{X} - \theta)^2] = S^2/n = 0.1817$

r						$\hat{\theta}$	$\theta(F_e)$	MSE
1	-0.643	-0.643	-0.643	0.462	0.462	-0.201	-0.206	2.544e-05
2	-0.643	0.183	0.636	0.636	0.636	0.2896	-0.206	0.2456
3	-1.67	-1.67	0.183	0.462	0.636	-0.411	-0.206	0.04204
4	-1.67	-0.643	0.183	0.183	0.636	-0.2617	-0.206	0.003105
5	-0.643	0.462	0.462	0.636	0.636	0.3105	-0.206	0.2667
6	-1.67	-1.67	0.183	0.183	0.183	-0.5573	-0.206	0.1234
7	-0.643	0.183	0.183	0.462	0.636	0.1642	-0.206	0.137
8	-1.67	-1.67	-0.643	0.183	0.183	-0.7225	-0.206	0.2667
9	0.183	0.462	0.462	0.636	0.636	0.4756	-0.206	0.4646
10	-0.643	0.183	0.183	0.462	0.636	0.1642	-0.206	0.137
								0.1686

Python code

```
def calculate_quantile(data: np.ndarray, q: float) -> float:
    return float(np.quantile(data, q))

def bootstrap_sample(data):
    return np.random.choice(data, size=len(data), replace=True)
```

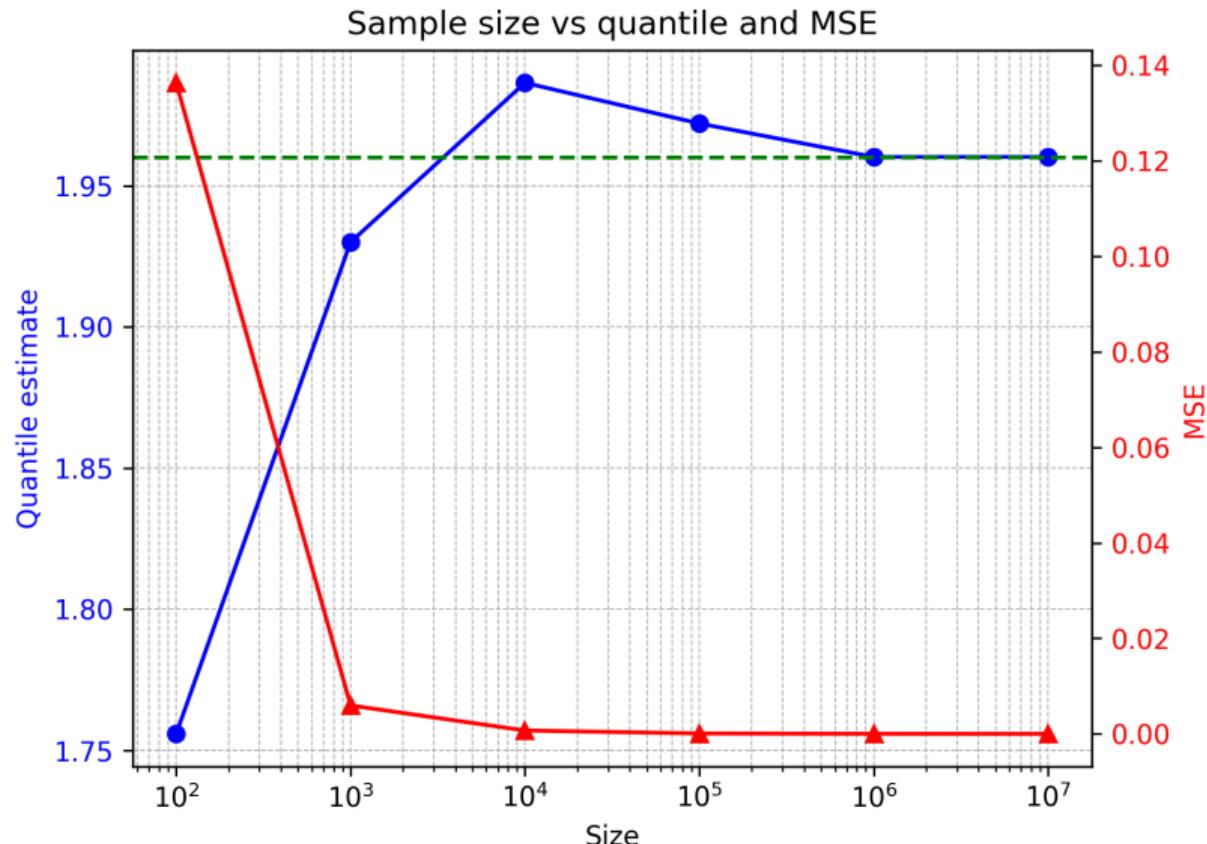
MSE for the percentile: Python code

```
def mean_squared_error_quantile(
    data: np.ndarray,
    q: float,
    num_bootstrap: int = 100,
) -> tuple[float, float]:
    true_quantile = calculate_quantile(data, q)
    bootstrap_estimates = np.array(
        [
            calculate_quantile(bootstrap_sample(data), q)
            for _ in range(num_bootstrap)
        ]
    )
    mse = float(np.mean((bootstrap_estimates - true_quantile) ** 2))
    return true_quantile, mse
```

Experiments

```
quantile_threshold = 0.975
MAX_SAMPLE_SIZE = 7
results = [
    (10**power, mean_squared_error_quantile(
        data[0 : 10**power],
        q=quantile_threshold)
    )
    for power in range(2, MAX_SAMPLE_SIZE + 1)
]
```

Results



Bootstrap confidence intervals

Idea

Bootstrapping approximates the sampling distribution of an estimator $\hat{\theta}$.

Percentile method

- ▶ Generate bootstrap estimates $\hat{\theta}^1, \dots, \hat{\theta}^R$.
- ▶ A 95% confidence interval is given by the 2.5% and 97.5% quantiles of this empirical distribution.

Remark

No parametric assumption on the distribution of $\hat{\theta}$ is required.

Summary

- ▶ The number of draws is determined by the required precision.
- ▶ In some cases, the precision is derived from theoretical results.
- ▶ If not, rely on bootstrapping.
- ▶ Idea: use simulation to estimate the Mean Square Error.

Appendix: MSE for the mean

- ▶ Consider X_1, \dots, X_n i.i.d. r.v.
- ▶ Denote $\theta = E[X_i]$ and $\sigma^2 = \text{Var}(X_i)$.
- ▶ Consider $\bar{X} = \sum_{i=1}^n X_i/n$.
- ▶ $E[\bar{X}] = \sum_{i=1}^n E[X_i]/n = \theta$.
- ▶ MSE:

$$E[(\bar{X} - \theta)^2] = \text{Var } \bar{X}$$

$$= \text{Var} \left(\sum_{i=1}^n X_i/n \right)$$

$$= \sum_{i=1}^n \text{Var}(X_i)/n^2$$

$$= \sigma^2/n.$$

Appendix: why Welford's update is equivalent

Invariant

Define

$$M_{2,k} = \sum_{i=1}^k (X_i - \bar{X}_k)^2 \quad \Rightarrow \quad S_k^2 = \frac{M_{2,k}}{k-1}.$$

Appendix: why Welford's update is equivalent

Let $\delta_k = X_k - \bar{X}_{k-1}$ and $\bar{X}_k = \bar{X}_{k-1} + \delta_k/k$. Then

$$M_{2,k} = \sum_{i=1}^{k-1} (X_i - \bar{X}_k)^2 + (X_k - \bar{X}_k)^2.$$

For $i \leq k-1$, write $X_i - \bar{X}_k = (X_i - \bar{X}_{k-1}) - (\bar{X}_k - \bar{X}_{k-1})$ and use $\sum_{i=1}^{k-1} (X_i - \bar{X}_{k-1}) = 0$ to obtain

$$\sum_{i=1}^{k-1} (X_i - \bar{X}_k)^2 = M_{2,k-1} + (k-1)(\bar{X}_k - \bar{X}_{k-1})^2.$$

Also, $X_k - \bar{X}_k = \delta_k - (\bar{X}_k - \bar{X}_{k-1})$ and $\bar{X}_k - \bar{X}_{k-1} = \delta_k/k$, hence

$$(k-1)\left(\frac{\delta_k}{k}\right)^2 + \left(\delta_k - \frac{\delta_k}{k}\right)^2 = \delta_k^2 \left(1 - \frac{1}{k}\right) = \delta_k(X_k - \bar{X}_k).$$

Therefore,

$$M_{2,k} = M_{2,k-1} + \delta_k(X_k - \bar{X}_k),$$

which is exactly Welford's update.