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Introduction

The outputs of the simulator are random variables.
Running the simulator provides one realization of these r.v.
We have no access to the pdf or CDF of these r.v.

Well... this is actually why we rely on simulation.

How to derive statistics about a r.v. when only instances are known?
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How to measure the quality of this statistic?
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Sample mean and variance
» Consider Xq, ..., X, i.id. r.v
> E[X,] = W, Var(X,-) = 0'2.
The sample mean

BI\I/II—l

is an unbiased estimate of the population mean 1, as E[X] = p.

The sample variance

S? = nilz(x,-—fqz
i=1

is an unbiased estimator of the population variance 02, as E[S?] = 2. (see

proof: Ross, chapter 7) 326



Sample mean and variance

Recursive computation (Welford's algorithm)
1. Initialize: X; = X1, Mp =0.
2. Fork=2,..., n:

_ _ — )
d = Xk — Xi—1, Xk:Xk—l‘f’Z:

My = My + 8(Xi — Xi).

3. Sample variance:
M,

n—1

S? =
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Mean

vVvyyvyy

Square Error

Consider Xi, ..., X, i.i.d. r.v. with CDF F.
Consider a parameter O(F) of the distribution (mean, quantile, mode, etc.)

Consider @(Xl, ..., X,) an estimator of O(F).
The Mean Square Error of the estimator is defined as

~ 2
MSE(F) = Ef {(e(xl, LX) —e(F)) ] ,
where Ef emphasizes that the expectation is taken under the assumption

that the r.v. all have distribution F.

If F is unknown, it is not immediate to find an estimator of MSE.
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How many draws must be used?

Let X a r.v. with mean 0 and variance o2.
We want to estimate the mean 0 of the simulated distribution.

The estimator used is the sample mean: X.

vvyyy

The mean square error is

The sample mean X is normally distributed with mean 6 and variance o2/n.
So we can stop generating data when o/4/n is small.

02 is approximated by the sample variance S.

Law of large numbers: at least 100 draws (say) should be used.

See Ross p. 121 for details.

vvyVvyyvyy
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How many draws are enough? — When theory applies

Analytical stopping rule

For the sample mean X:
2

MSE(X) = =
n
so precision improves at rate 1/4/n.

Required assumptions
» Indicator is the sample mean
» Draws are i.i.d.

» Finite variance o?

Takeaway
This gives a principled stopping rule — but only in this narrow setting.

7/26



Beyond the mean: when theory breaks down

Typical simulation indicators

» Quantiles (e.g. 95% travel time)
» Maxima or tail probabilities

» Nonlinear performance metrics

Problem
» Closed-form MSE is unavailable

» Asymptotic approximations may be unreliable
» No universal rule for choosing n

Solution
Use simulation itself to assess estimator quality: bootstrapping.
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Empirical distribution function

» Consider Xi, ..., X, i.i.d. r.v. with CDF F.
» Consider a realization xi,...,x, of these r.v.

» The empirical distribution function is defined as
Fbd =1 Y I <
e\ X) = — Xi X X7,
-

where
1 if x; < x,

0 otherwise.

/m<@:{

» CDF of a r.v. that can take any x; with equal probability.
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Empirical CDF
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Empirical CDF
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Empirical CDF
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From reality to data

Reality Data
Random variable X Xe
CDF F Fe
True parameter O(F) O(F.)
Sample X1, Xo~F  XE, ..., XS~ F,
Estimate (X1, .., Xy @(Xf, L XE)
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Mean Square Error

» We use the empirical distribution function F,

» We can approximate
N 2
MSE(F) = Ef (e(x1 ..... X)) —e(F)) } ,

by

N 2
MSE(F.) = Ef, (e(Xf ..... xe)—e(Fe)> ]

» O(F.) can be computed directly from the data (mean, variance, etc.)
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Mean Square Error

» We want to compute

~ 2
MSE(F.) = Er, [(e(xle ,,,,, X°) —G(Fe)> } ,

» X¢ are r.v. that can take any x; with equal probability.
» Therefore,

MSE(F, Z Z[( Xiro x,-n)—G(Fe)>2},

=1 ih=1

» Clearly impossible to compute when n is large.

» Solution: simulation.
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Bootstrapping
» Forr=1,...,R

» Draw xq,...,x; from F, that is draw from the data:

1. Let s be a draw from U][0, 1]
2. Set j = floor(ns).
3. Return x;.

» Compute

» Estimate of MSE(F,.) and, therefore, of MSE(F):
1 R
22 M
r=1

» Typical value for R: 100.
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Bootstrap: simple example

» Data: 0.636, -0.643, 0.183, -1.67, 0.462

» Mean= -0.206
» MSE= E[(X —0)?] = §?/n= 0.1817

r 6 0(Fe) MSE

1 | -0.643 -0.643 -0.643 0462 0462 | -0.201 20206 2.544e-05

2 | -0.643 0.183 0.636  0.636  0.636 0.2896  -0.206  0.2456

3 | -167 -1.67 0.183 0462 0.636 | -0.411 -0.206  0.04204

4 | -1.67 -0.643 0.183 0183  0.636 | -0.2617  -0.206  0.003105

5 | -0.643 0.462 0.462 0636  0.636 0.3105 -0.206  0.2667

6 | -167 -1.67 0.183 0183 0.183 | -0.5573  -0.206  0.1234

7 | -0.643 0.183 0.183 0462  0.636 0.1642  -0.206  0.137

8 | -167 -1.67 -0.643 0183  0.183 | -0.7225  -0.206  0.2667

9 0.183 0.462 0.462  0.636  0.636 0.4756  -0.206  0.4646
10 | -0.643 0.183 0.183  0.462  0.636 0.1642  -0.206  0.137

0.1686
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Python code

def calculate_quantile(data: np.ndarray, q: float) -> float:
return float(np.quantile(data, q))

def bootstrap_sample(data):
return np.random.choice(data, size=len(data), replace=True)
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MSE for the percentile: Python code

def mean_squared_error_quantile(
data: np.ndarray,
q: float,
num_bootstrap: int = 100,
) —> tuple[float, float]:
true_quantile = calculate_quantile(data, q)
bootstrap_estimates = np.array(
[
calculate_quantile(bootstrap_sample(data), q)
for _ in range(num_bootstrap)
]
)
mse = float(np.mean((bootstrap_estimates - true_quantile) ** 2))
return true_quantile, mse
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Experiments

quantile_threshold = 0.975
MAX_SAMPLE_SIZE =7
results = [

(10**power, mean_squared_error_quantile(
data[0 : 10%*power],
g=quantile_threshold)

)

for power in range(2, MAX_SAMPLE_SIZE + 1)

]
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Results

Quantile estimate
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Bootstrap confidence intervals

ldea
Bootstrapping approximates the sampling distribution of an estimator 0.

Percentile method
» Generate bootstrap estimates 0!, ..., 0".

» A 95% confidence interval is given by the 2.5% and 97.5% quantiles of this
empirical distribution.

Remark
No parametric assumption on the distribution of 0 is required.
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Summary

» The number of draws is determined by the required precision.
» In some cases, the precision is derived from theoretical results.
» If not, rely on bootstrapping.

» Idea: use simulation to estimate the Mean Square Error.
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Appendix: MSE for the mean

» Consider Xi, ..., X, i.i.d. r.v.

» Denote O = E[X;] and 02 = Var(X;).

> Consider X =3 7 | X;/n.

> E[X] =5 " E[X]/n=6.

» MSE: _
El(X —0)’] = VarX
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Appendix: why Welford's update is equivalent

Invariant
Define
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Appendix: why Welford's update is equivalent
Let &, = X —)_<k_1 and )_<k = )_<k_1 + 8x/k. Then
k—1
Mase =Y (Xi—Xi)? + (Xi — X)?.
i=1
For i < k—1, write X; — X = (X; — Xu—1) — (X — X—_1) and use
foz_ll(X,- — Xk—1) = 0 to obtain
k—1 ) ) )
D (X —Xi)? = M1+ (k— 1) (X — X 1),
i=1
AlSO, Xk —Xk . 6k - ()_(k —)_<k_1) and )?k —)_(k_l — 5/(//(, hence
dk Ok

(k — 1)(7)2 + (5k - —)2 - 6i<1 - 1) — 5, (Xe — %),

k k

Therefore, _
Mo = Mo 1 + 8 ( Xk — Xi),

which is exactly Welford's update.
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