

Optimization and Simulation

Discrete Events Simulation

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

Simulation of a system

Keep track of variables

- ▶ Time variable t : amount of time that has elapsed.
- ▶ Counter variables: count events having occurred by t
- ▶ System state variables.

Events

- ▶ List of future events sorted in chronological order
- ▶ Process the next event:
 - ▶ remove the first event in the list,
 - ▶ update the variables,
 - ▶ generate new events, if applicable (keep the list sorted),
 - ▶ collect statistics.

Why discrete-event simulation is efficient

Event-driven simulation

- ▶ Time jumps directly to the next event.
- ▶ No computation when nothing happens.
- ▶ Cost proportional to the number of events.

Compared to time-driven simulation

- ▶ Time is advanced in small increments.
- ▶ Many useless steps when the system is idle.

Discrete Event Simulation: an example

Pavel at Satellite

- ▶ Pavel has applied to be a waiter at Satellite
- ▶ According to his experience, he pretends to be able to serve in average one customer per minute.
- ▶ In order to make the decision to hire Pavel or not, the manager wants to know:
 - ▶ In average, how much time will a customer wait after her arrival, until being served?
 - ▶ If Pavel will need extra hours to serve everybody?

SATELLITE
bar · concerts · cafés-théâtres

Discrete Event Simulation: an example

Context

- ▶ When a customer arrives, she is served if Pavel is free. Otherwise, she joins the queue.
- ▶ Customers are served using a “first come, first served” logic.
- ▶ When Pavel has finished serving a customer,
 - ▶ he starts serving the next customer in line, or
 - ▶ waits for the next customer to arrive if the queue is empty.
- ▶ The amount of time required by Pavel to serve a customer is a random variable X_s with pdf f_s .
- ▶ The amount of time between the arrival of two customers is a random variable X_a with pdf f_a .
- ▶ Satellite does not accept the arrival of customers after time T .

Discrete Event Simulation: an example

Variables

Time:

t

Counters:

N_A number of arrivals

N_D number of departures

System state:

n number of customers in the system

Event list

- ▶ Next arrival. Time: t_A
- ▶ Service completion for the customer currently being served. Time: t_D (∞ if no customer is being served).
- ▶ The bar closes. Time: T .

Discrete Event Simulation: an example

List management

- ▶ The number of events is always 3 in this example.
- ▶ We just need to update the times, and keep them sorted.

Initialization

Variables

- ▶ Time: $t = 0$.
- ▶ Counters: $N_A = N_D = 0$.
- ▶ State: $n = 0$.
- ▶ First event: arrival of first customer: draw r from f_a .
- ▶ Events list:
 - ▶ $t_A = r$,
 - ▶ $t_D = \infty$,
 - ▶ T (bar closes).

Statistics to collect

- ▶ $A(i)$ arrival of customer i .
- ▶ $D(i)$ departure of customer i .
- ▶ T_p time after T that the last customer departs.

Case 1: arrival of a customer

If $t_A = \min(t_A, t_D, T)$

- ▶ Time $t = t_A$: we move along to time t_A .
- ▶ Counter $N_A = N_A + 1$: one more customer arrived.
- ▶ State $n = n + 1$: one more customer in the system.
- ▶ Next arrival:
 - ▶ draw r from f_a ,
 - ▶ $t_A = t + r$.
- ▶ Service time: if $n = 1$ (she is served immediately)
 - ▶ draw s from f_s ,
 - ▶ $t_D = t + s$.
- ▶ Statistics: $A(N_A) = t$.

Case 2: departure of a customer

If $t_D = \min(t_A, t_D, T)$, $t_D < t_A$

- ▶ Time $t = t_D$: we move along to time t_D .
- ▶ Counter $N_D = N_D + 1$: one more customer departed.
- ▶ State $n = n - 1$: one less customer in the system.
- ▶ Service time: if $n = 0$, then $t_D = \infty$. Otherwise,
 - ▶ draw s from f_s ,
 - ▶ $t_D = t + s$.
- ▶ Statistics: $D(N_D) = t$.

Case 3: after hours

Logic

After time T :

- ▶ No new arrivals are scheduled.
- ▶ The server continues until the system becomes empty.
- ▶ Only departure events are processed.

Case 3: after hours

If $T < \min(t_A, t_D)$

1. Customers are still waiting: $n > 0$
 - ▶ Time $t = t_D$: we move along to time t_D .
 - ▶ Counter $N_D = N_D + 1$: one more customer departed.
 - ▶ State $n = n - 1$: one less customer in the system.
 - ▶ Service time: if $n > 0$, then
 - ▶ draw s from f_s ,
 - ▶ $t_D = t + s$.
 - ▶ Statistics: $D(N_D) = t$.
2. No more customers: $n = 0$
 - ▶ Statistics: $T_p = \max(t - T, 0)$.

An instance

Scenario

- ▶ Service time: exponential with mean 1.0
- ▶ Inter-arrival time: exponential with mean 1.0
- ▶ Closing time: 10.0

An instance (ctd.)

Event	t	NA	ND	n	tA	tD	T
Arrival	0.94	1	0	1	1.48	3.22	10.0
Arrival	1.48	2	0	2	2.01	3.22	10.0
Arrival	2.01	3	0	3	3.16	3.22	10.0
Arrival	3.16	4	0	4	3.44	3.22	10.0
Departure	3.22	4	1	3	3.44	3.49	10.0
Arrival	3.44	5	1	4	3.81	3.49	10.0
Departure	3.49	5	2	3	3.81	3.91	10.0
Arrival	3.81	6	2	4	7.22	3.91	10.0
Departure	3.91	6	3	3	7.22	5.84	10.0
Departure	5.84	6	4	2	7.22	5.88	10.0
Departure	5.88	6	5	1	7.22	6.49	10.0
Departure	6.49	6	6	0	7.22	∞	10.0
Arrival	7.22	7	6	1	7.42	7.38	10.0
...							

An instance (ctd.)

Event	t	NA	ND	n	tA	tD	T
...							
Departure	7.38	7	7	0	7.42	∞	10.0
Arrival	7.42	8	7	1	8.58	8.42	10.0
Departure	8.42	8	8	0	8.58	∞	10.0
Arrival	8.58	9	8	1	9.64	9.91	10.0
Arrival	9.64	10	8	2	10.7	9.91	10.0
Departure	9.91	10	9	1	10.7	10.7	10.0
After hours	10.7	10	10	0	10.7	10.7	10.0
Finish	10.7	10	10	0	10.7	10.7	10.0

An instance (ctd.)

Statistics for each customer (rounded)

Cust.	Arrival	Departure	Time
1	0.94	3.22	2.28
2	1.48	3.49	2.02
3	2.01	3.91	1.9
4	3.16	5.84	2.68
5	3.44	5.88	2.45
6	3.81	6.49	2.68
7	7.22	7.38	0.165
8	7.42	8.42	1.0
9	8.58	9.91	1.33
10	9.64	10.7	1.02

An instance (ctd.)

Aggregate indicators

- ▶ Average time in the system: 1.75
- ▶ Pavel leaves Satellite at 10.7

An instance (ctd.)

Realizations

- ▶ This represents one draw from the random variables.
- ▶ Multiple draws are necessary.
- ▶ Remember the pitfalls of simulation.

Relation to queueing theory

Analytical vs simulation approaches

- ▶ This system corresponds to a simple single-server queue.
- ▶ Closed-form results exist under strong assumptions.
- ▶ Simulation allows:
 - ▶ arbitrary service-time distributions,
 - ▶ finite operating hours,
 - ▶ extensions with priorities or multiple servers.

Another instance

Scenario: Pavel works faster

- ▶ Service time: exponential with mean 0.2
- ▶ Inter-arrival time: exponential with mean 1.0
- ▶ Closing time: 10.0

Another instance (ctd.)

Event	t	NA	ND	n	tA	tD	T
Arrival	1.02	1	0	1	3.14	1.38	10.0
Departure	1.38	1	1	0	3.14	∞	10.0
Arrival	3.14	2	1	1	6.97	3.25	10.0
Departure	3.25	2	2	0	6.97	∞	10.0
Arrival	6.97	3	2	1	7.08	7.26	10.0
Arrival	7.08	4	2	2	7.24	7.26	10.0
Arrival	7.24	5	2	3	10.0	7.26	10.0
Departure	7.26	5	3	2	10.0	8.32	10.0
Departure	8.32	5	4	1	10.0	8.51	10.0
Departure	8.51	5	5	0	10.0	∞	10.0
Finish	10.0	5	5	0	10.0	∞	10.0

Another instance (ctd.)

Statistics for each customer (rounded)

Cust.	Arrival	Departure	Time
1	1.02	1.38	0.355
2	3.14	3.25	0.11
3	6.97	7.26	0.296
4	7.08	8.32	1.24
5	7.24	8.51	1.27

Aggregate indicators

- ▶ Average time in the system: 0.654
- ▶ Pavel leaves Satellite at 10.0.
- ▶ He stops working at 8.51.

General framework

$$Z = h(X, Y, U) + \varepsilon_z$$

State variables X

- ▶ Time
- ▶ Number of customers in the system

External input Y

Arrival of customers

Control U

Serving customers

General framework

Indicators Z

- ▶ Time of each customer in the system.
- ▶ Average time in the system.
- ▶ Time at which Pavel leaves Satellite.

Statistics

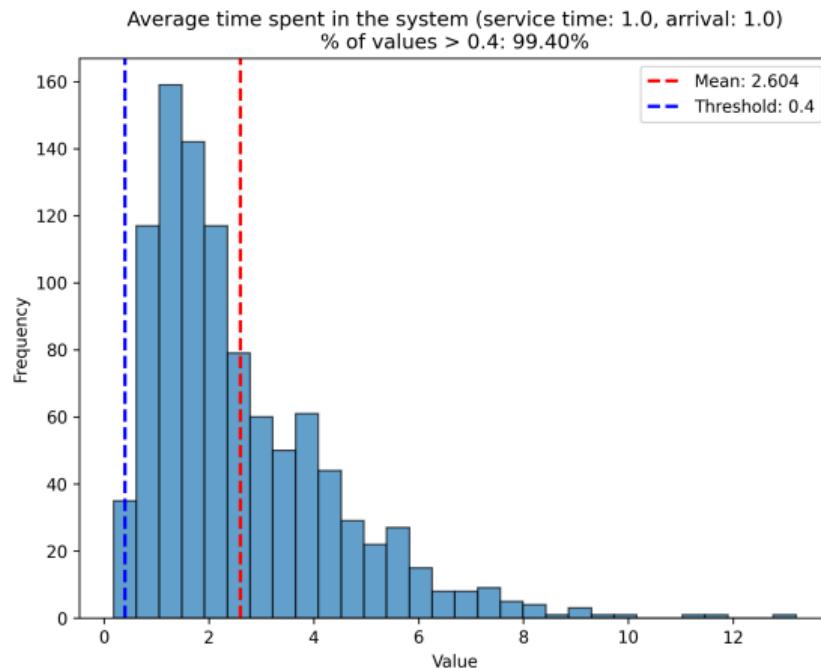
- ▶ Numbers reported above are based on one instance.
- ▶ Insufficient to draw any conclusion (remember road safety example)
- ▶ Their distribution has to be investigated.
- ▶ Many realizations are necessary.

Statistics

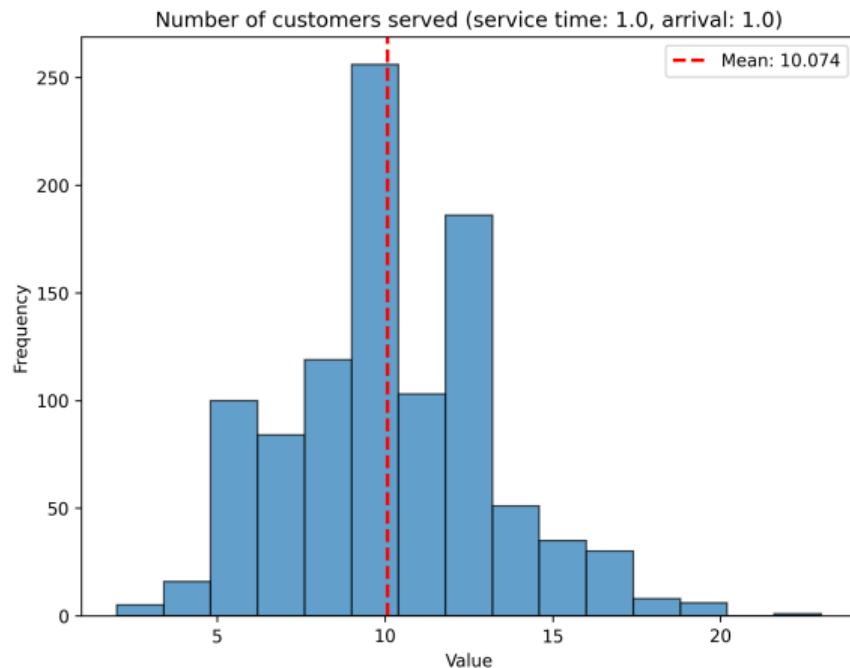
Possible confusion in terminology

- ▶ The desired indicator Z may be a statistic from the simulator:
 - ▶ Mean time spent in the system
 - ▶ Maximum time spent in the system
 - ▶ Number of customers spending more than α min. in the system
- ▶ Still, each of them is a random variable, and statistics must be considered.
 - ▶ 5% quantile of the mean time spent in the system
 - ▶ Mean of the maximum time spent in the system
 - ▶ Mean of the mean time spent in the system
 - ▶ Standard deviation of the mean time spent in the system
 - ▶ Standard deviation of the number of customers spending more than α in the system
- ▶ Drawing histograms is highly recommended

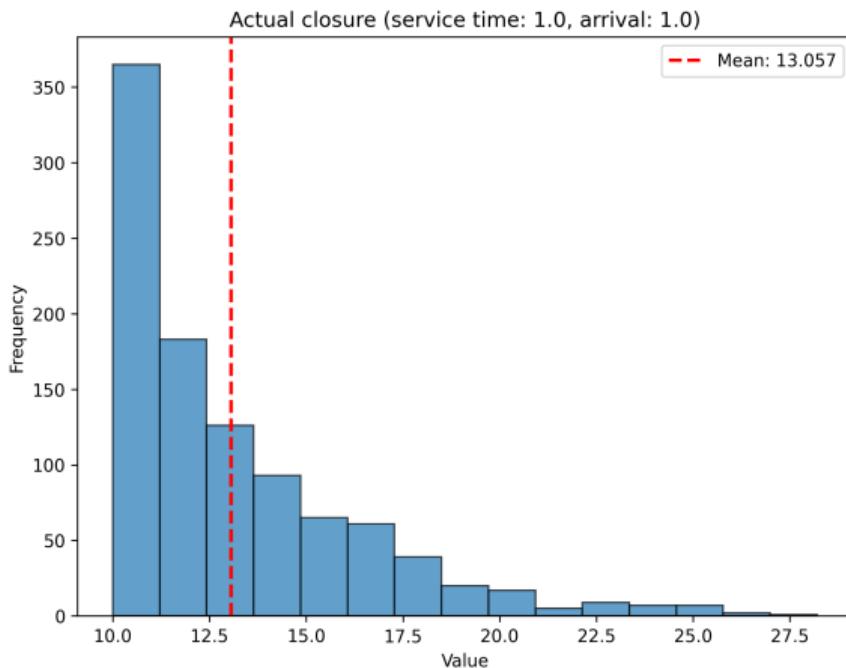
Statistics



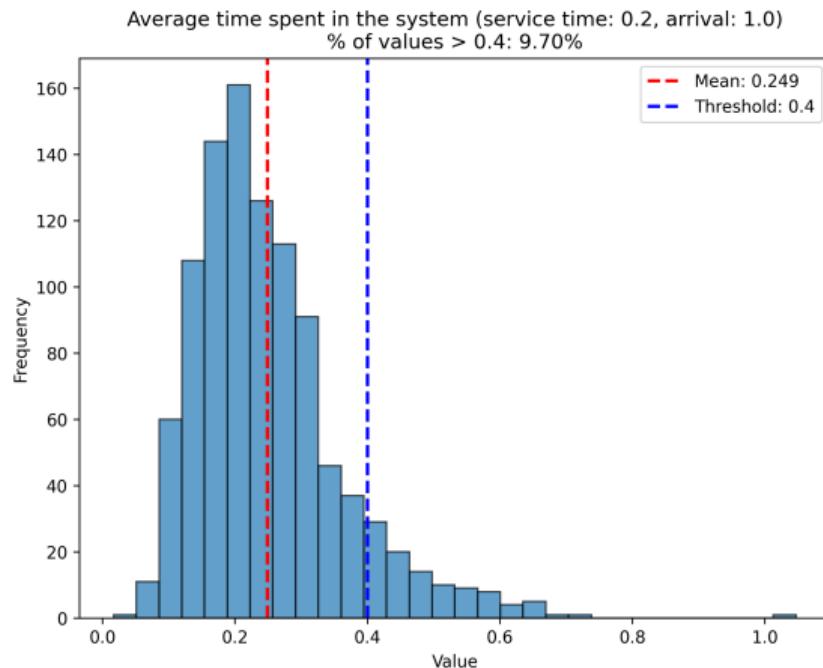
Statistics



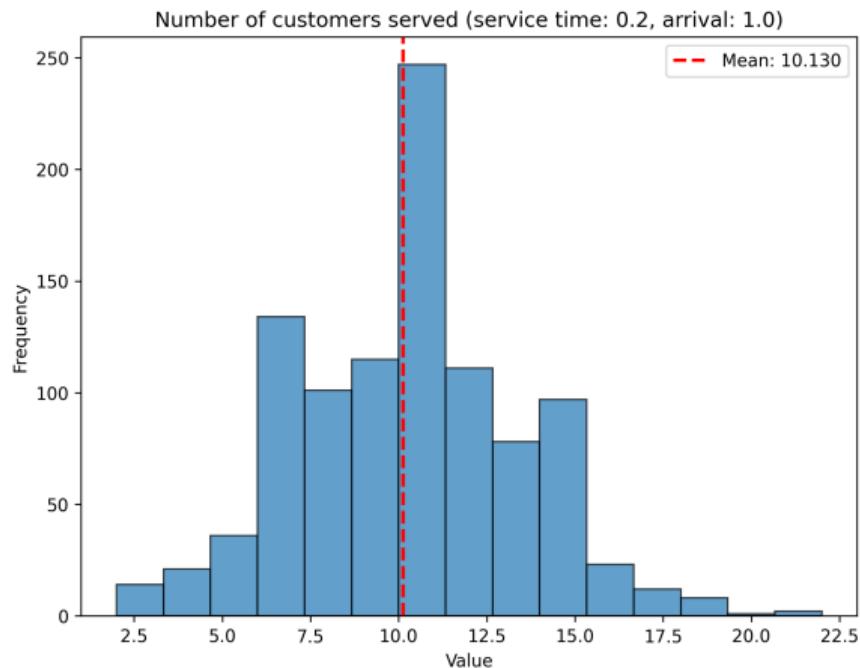
Statistics



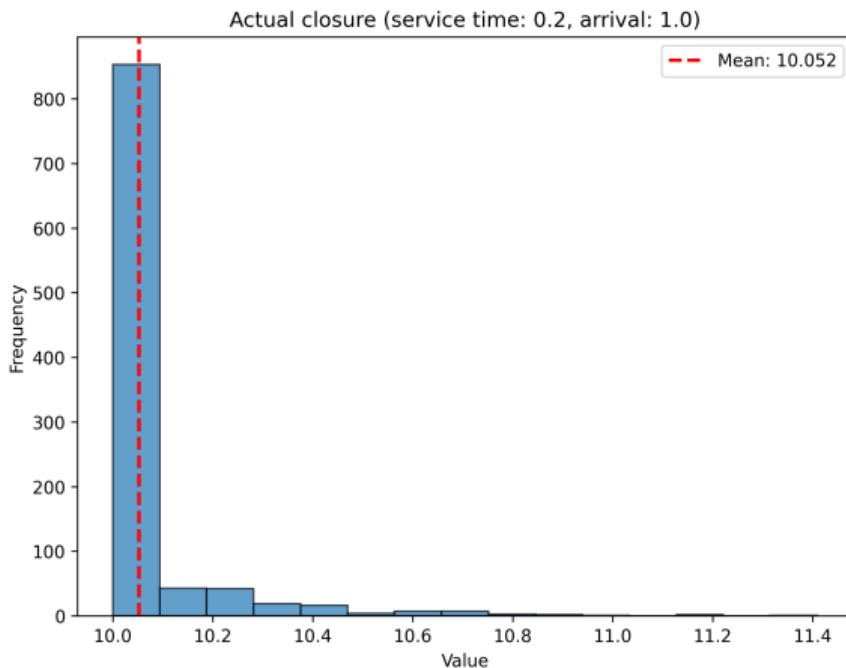
Statistics



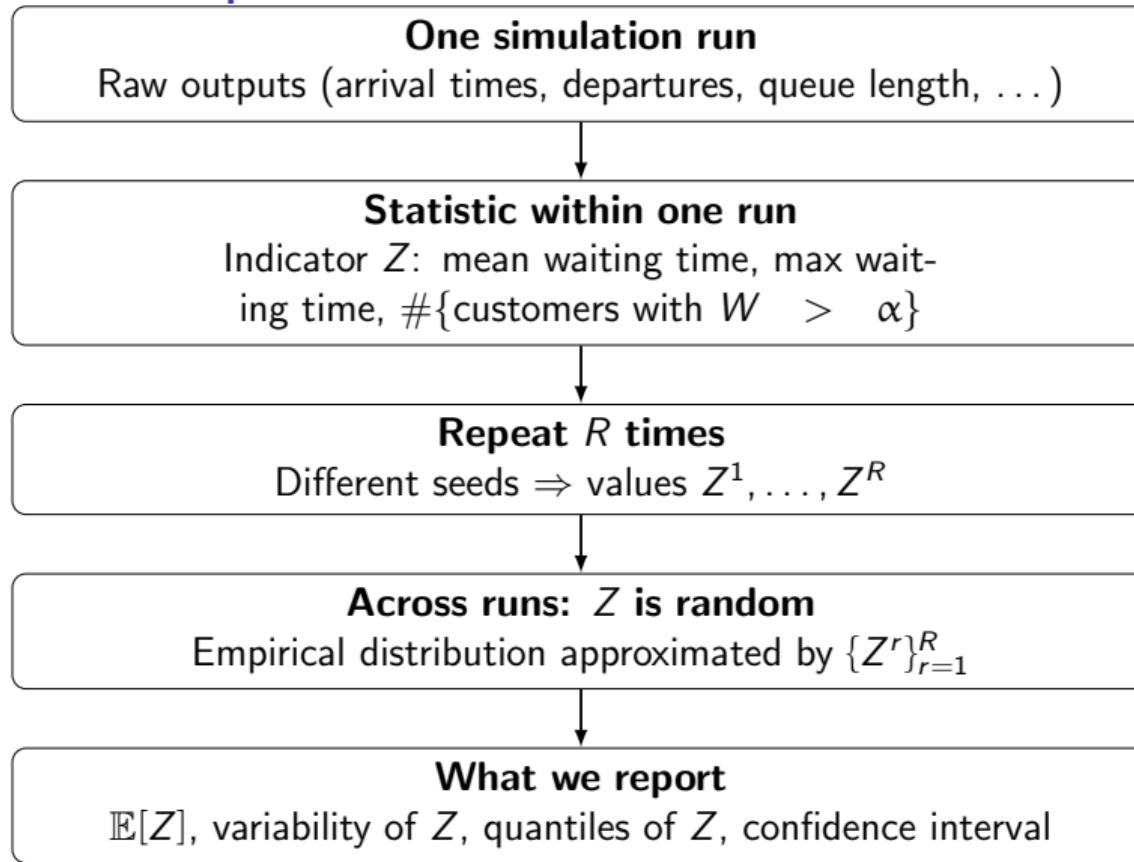
Statistics



Statistics



From one run to reported results



Conclusion

Strengths of discrete event simulation

- ▶ Decomposition of a complex system into simple subsystems.
- ▶ Easy to mimick a real system

Challenges

- ▶ Importance of book-keeping.
- ▶ Easy to be overwhelmed by generated data. Careful statistical analysis is needed.
- ▶ Importance to distinguish between an indicator and the statistics of its distribution.