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Discrete distributions

▶ Let X be a discrete r.v. with pmf:

P(X = xi) = pi , i = 1, . . . , L

where
∑L

i=1 pi = 1.

▶ The support can be finite or infinite.

▶ We know how to draw from U(0, 1).

▶ How can we draw from X?

3 / 60



Inverse Transform Method: illustration

p1 = 0.24 p2 = 0.42 p3 = 0.11 p4 = 0.23

0 0.24 0.66 0.77 1
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Discrete distributions

Inverse transform method (discrete)

1. Draw r ∼ U(0, 1).

2. Compute cumulative probabilities Fk =
∑k

i=1 pi .

3. Return X = xk for the smallest k such that r ⩽ Fk .

Implementation remark
Precompute (Fk)k once and use a search (often binary search) for each draw.
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Discrete inverse transform in Python (NumPy)
import numpy as np

x = np.array ([1, 2, 3, 4])

p = np.array ([0.24 , 0.42, 0.11, 0.23])

F = np.cumsum(p) # [0.24 , 0.66, 0.77, 1.00]

rng = np.random.default_rng (2026)

r = rng.random(size =5)

k = np.searchsorted(F, r) # smallest k with r <= F[k]

samples = x[k]

print(r)

print(samples)

[0.17893481 0.63991317 0.4672684 0.37050053 0.35491733]

[1 2 2 2 2]
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Discrete distributions
Acceptance-rejection

▶ Attributed to von Neumann.

▶ We want to draw from X with pmf pi .

▶ We know how to draw from Y with pmf qi .

Define a constant c ⩾ 1 such that

pi
qi

⩽ c ∀i s.t. pi > 0.

Algorithm

1. Draw y from Y

2. Draw r from U(0, 1)

3. If r <
py
cqy

, return x = y and stop. Otherwise, start again.
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Acceptance-rejection: analysis

Probability to be accepted during a given iteration

P(Y = y , accepted) = P(Y = y) P(accepted|Y = y)
= qy py/cqy

=
py
c

Probability to be accepted

P(accepted) =
∑

y P(accepted|Y = y)P(Y = y)
=

∑
y

py
cqy

qy
= 1/c .
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Acceptance-rejection: analysis

Probability to draw x at iteration n

P(X = x |n) = (1− 1
c
)n−1 px

c
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Acceptance-rejection: analysis

P(X = x) =

+∞∑
n=1

P(X = x |n)

=

+∞∑
n=1

(
1−

1

c

)n−1
px
c

= c
px
c

= px .

Reminder: geometric series:
+∞∑
n=0

xn =
1

1− x
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Acceptance-rejection: analysis

Remarks
▶ Average number of iterations: c

▶ The closer c is to 1, the closer the pmf of Y is to the pmf of X .
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Accept–reject: acceptance rate in practice
import numpy as np

# Example: target p over {0,1,2,3}, proposal q uniform

p = np.array ([0.24 , 0.42, 0.11, 0.23])

q = np.ones_like(p) / len(p)

c = np.max(p / q) # envelope constant

rng = np.random.default_rng (123)

R = 100000

accepted = 0

for _ in range(R):

y = rng.integers(0, len(p)) # draw from q

r = rng.random ()

if r < p[y] / (c * q[y]):

accepted += 1
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Accept–reject: acceptance rate in practice

print(f"c␣=␣{c:.3f}")

print(f"theory␣accept␣rate␣=␣{1/c:.3f}")

print(f"empirical␣accept␣rate␣=␣{accepted/R:.3f}")

c = 1.680

theory accept rate = 0.595

empirical accept rate = 0.594
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Continuous distributions

Inverse Transform Method
▶ Let X be a continuous r.v. with CDF FX (x)

▶ Draw r from a uniform U(0, 1)

▶ Generate F−1
X (r).

Motivation
▶ FX is monotonically increasing

▶ It implies that x1 ⩽ x2 is equivalent to FX (x1) ⩽ FX (x2).
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Inverse Transform Method
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Inverse Transform Method

More formally

▶ Denote FU(x) = x the CDF of the r.v. U(0, 1)

▶ Let G be the distribution of the r.v. F−1
X (U)

G (x) = Pr(F−1
X (U) ⩽ x)

= Pr(FX (F
−1
X (U)) ⩽ FX (x))

= Pr(U ⩽ FX (x))
= FU(FX (x))
= FX (x)
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Inverse Transform Method

Examples: let r be a draw from U(0, 1)

Name FX (ε) Draw
Exponential(b) 1− e−ε/b −b ln r

Logistic(µ,σ) 1/(1+ exp(−(ε− µ)/σ)) µ− σ ln(1
r
− 1)

Power(n,σ) (ε/σ)n σr 1/n

Note
The CDF is not always available (e.g. normal distribution).
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Continuous distributions
Rejection Method

▶ We want to draw from X with pdf fX .

▶ We know how to draw from Y with pdf fY .

Define a constant c such that

fX (ε)

fY (ε)
⩽ c ∀ε

Algorithm

1. Draw y from Y

2. Draw r from U(0, 1)

3. If r < fX (y)
cfY (y)

, return x = y and stop. Otherwise, start again.

19 / 60



Rejection Method: example
Draw from a normal distribution
▶ Let X̄ ∼ N(0, 1) and X = |X̄ |

▶ Probability density function: fX (ε) =
2√
2π
e−ε2/2, 0 < ε < +∞

▶ Consider an exponential r.v. with pdf fY (ε) = e−ε, 0 < ε < +∞
▶ Then

fX (ε)

fY (ε)
=

2√
2π

eε−ε2/2

▶ The ratio takes its maximum at ε = 1, therefore

fX (ε)

fY (ε)
⩽

fX (1)

fY (1)
=
√

2e/π ≈ 1.315.

▶ Rejection method, with fX (ε)
cfY (ε)

= 1√
e
eε−ε2/2 = eε−

ε2

2 − 1
2 = e−

(ε−1)2

2
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Rejection Method: example

Algorithm: draw from a normal

1. Draw r from U(0, 1)

2. Let y = − ln r (draw from the exponential)

3. Draw s from U(0, 1)

4. If s < e−
(y−1)2

2 return x = y and go to step 5. Otherwise, go to step 1.

5. Draw t from U(0, 1).

6. If t ⩽ 0.5, return x . Otherwise, return −x .

Note
This procedure can be improved. See [Ross, 2012] (Chapter 5).
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Draws from the exponential
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Rejected draws
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Accepted draws
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Rejected and accepted draws
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Drawing from an unnormalized distribution

Rejection Method

▶ We want to draw from X with pdf

fX =
gX
K

,

where

K =

∫
ε

gX (ε)dε

is difficult or impossible to calculate.

▶ Therefore, we know gX but we don’t know fX .

▶ We know how to draw from Y with pdf fY .

26 / 60



Drawing from an unnormalized distribution

▶ Define a constant cu such that

gX (ε)

fY (ε)
⩽ cu ∀ε.

Therefore,
fX
fY

=
gX
KfY

⩽
cu
K
,

and the rejection method can be applied with c = cu/K .

▶ Accept probability:
fX
cfY

=
gX
K

K

cu

1

fY
=

gX
cufY

,

and K does not play any role.
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Drawing from the standard normal distribution

▶ Accept–reject is possible, but it is not the most efficient approach for
N(0, 1).

▶ In practice we use specialized methods (e.g. polar / Box–Muller; Ziggurat in
many libraries).

▶ Polar method (no tuning, no envelope): see Appendix.
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Transformations of standard normal
▶ If r is a draw from N(0, 1), then

s = br + a

is a draw from N(a, b2)

▶ If r is a draw from N(a, b2), then

er

is a draw from a log normal LN(a, b2) with mean

ea+(b2/2)

and variance
e2a+b2(eb

2

− 1)
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Multivariate normal

▶ If r1,. . . ,rn are independent draws from N(0, 1), and

r =

 r1
...
rn


▶ then

s = a + Lr

is a vector of draws from the n-variate normal N(a, LLT ), where
▶ L is lower triangular, and
▶ LLT is the Cholesky factorization of the variance-covariance matrix
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Multivariate normal

Example:

L =

 ℓ11 0 0
ℓ21 ℓ22 0
ℓ31 ℓ32 ℓ33


s1 = ℓ11r1
s2 = ℓ21r1 + ℓ22r2
s3 = ℓ31r1 + ℓ32r2 + ℓ33r3
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Transforming draws

Method
▶ Consider draws from the following distributions:

▶ normal: N(0, 1) (draws denoted by ξ below)
▶ uniform: U(0, 1) (draws denoted by r below)

▶ Draws R from other distributions are obtained from nonlinear transforms.

Lognormal(a,b)

f (x) =
1

xb
√
2π

exp

(
−(ln x − a)2

2b2

)
R = ea+bξ

33 / 60



Transforming draws

Cauchy(a,b)

f (x) =

(
πb

(
1+

(
x − a

b

)2
))−1

R = a + b tan

(
π(r −

1

2
)

)

χ2(a) (a integer)

f (x) =
x(a−2)/2e−x/2

2a/2Γ(a/2)
R =

a∑
j=1

ξ2
j
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Transforming draws

Exponential(a)

F (x) = 1− e−x/a R = −a ln r

Extreme Value(a,b)

F (x) = 1− exp
(
−e−(x−a)/b

)
R = a − b ln(− ln r)

Logistic(a,b)

F (x) =
(
1+ e−(x−a)/b

)−1
R = a + b ln

(
r

1− r

)
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Transforming draws

Pareto(a,b)

F (x) = 1−
(a
x

)b
R = a(1− r)−1/b

Standard symmetrical triangular distribution

f (x) =

{
4x if 0 ⩽ x ⩽ 1/2
4(1− x) if 1/2 ⩽ x ⩽ 1

R =
r1 + r2

2
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Transforming draws

Weibull(a,b)

F (x) = 1− e−(
x
a )

b

R = a(− ln r)1/b

Erlang(a,b) (b integer)

f (x) =
(x/a)b−1e−x/a

a(b − 1)!
R = −a

b∑
j=1

ln ri
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Choosing a sampling method

Four common situations
▶ Inverse transform: exact; needs CDF and (numerical) inverse.

▶ Accept–reject: general; needs an envelope cfY close to fX (accept rate
1/c).

▶ Specialized methods (e.g. normal): fastest and most reliable for
standard distributions.

▶ MCMC: for complex / unnormalized / high-dimensional targets when
global envelopes are hard.
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Monte-Carlo integration

Expectation

▶ X r.v. on [a, b], a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}

▶ Expectation of X :

E[X ] =

∫ b

a

xfX (x)dx .

▶ If g : R → R is a function, then

E[g(X )] =

∫ b

a

g(x)fX (x)dx .
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Monte-Carlo integration
Simulation

E[g(X )] ≈ 1

R

R∑
r=1

g(xr).

Approximating the integral

∫ b

a

g(x)fX (x)dx = lim
R→∞

1

R

R∑
r=1

g(xr).

so that ∫ b

a

g(x)fX (x)dx ≈ 1

R

R∑
r=1

g(xr).
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Monte-Carlo integration

Calculating I =
∫b
a g(x)fX (x)dx

▶ Consider X with pdf fX .

▶ Convenient choice: X ∼ U [0, 1], as fU(x) = 1, ∀x .
▶ Generate R draws xr , r = 1, . . . ,R from X ;

▶ Calculate

I ≈ Î =
1

R

R∑
r=1

g(xr).
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Monte-Carlo integration

Approximation error

▶ Sample variance:

VR =
1

R − 1

R∑
r=1

(g(xr) − Î )2.

▶ By simulation: as

Var[g(X )] = E[g(X )2] − E[g(x)]2,

we have

VR ≈ 1

R

R∑
r=1

g(xr)
2 − Î 2.
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Monte-Carlo integration

Approximation error
95% confidence interval: [Î − 1.96eR ⩽ I ⩽ Î + 1.96eR ] where

eR =

√
VR

R
.
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Monte-Carlo integration

Example ∫ 1

0

exdx = e − 1 = 1.7183

▶ Random variable X uniformly distributed (fX (ε) = 1)

▶ g(X ) = eX

▶ Var(eX ) = e2−1
2

− (e − 1)2 = 0.2420

R 10 100 1000

Î 1.8270 1.7707 1.7287
Sample variance 0.1607 0.2125 0.2385

Simulated variance 0.1742 0.2197 0.2398
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Monte-Carlo integration
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Monte-Carlo integration
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Summary

▶ Draws from uniform distribution: available in any programming language

▶ Inverse transform method: requires the pmf or the CDF.

▶ Accept-reject: needs a “similar” r.v. easy to draw from.

▶ Transforming uniform and normal draws.

▶ First application: Monte-Carlo integration.
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Uniform distribution: X ∼ U(a, b)
pdf

fX (x) =

{
1/(b − a) if a ⩽ x ⩽ b,
0 otherwise.

CDF

FX (x) =


0 if x ⩽ a,
(x − a)/(b − a) if a ⩽ x ⩽ b,
1 if x ⩾ b.

Mean, median
(a + b)/2

Variance
(b − a)2/12 51 / 60



Normal distribution: X ∼ N(a, b)
pdf

fX (x) =
1

b
√
2π

exp

(
−
(x − a)2

2b2

)
CDF

FX (x) =

∫ x

−∞ fX (t)dt.

Mean, median
a

Variance
b2
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The polar method
Draw from a normal distribution
▶ Let X ∼ N(0, 1) and Y ∼ N(0, 1) independent

▶ pdf:

f (x , y) =
1√
2π

e−x2/2 1√
2π

e−y2/2 =
1

2π
e−(x2+y2)/2.

▶ Let R and θ such that R2 = X 2 + Y 2, and tanθ = Y /X .

(X ,Y )

R

θ
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The polar method
Change of variables (reminder)

▶ Let A be a multivariate r.v. distributed with pdf fA(a).

▶ Consider the change of variables b = H(a) where H is bijective and
differentiable

▶ Then B = H(A) is distributed with pdf

fB(b) = fA(H
−1(b))

∣∣∣∣det(dH−1(b)

db

)∣∣∣∣ .
Here: A = (X ,Y ), B = (R2, θ) = (T ,θ)

H−1(b) =

(
T

1
2 cos θ

T
1
2 sin θ

)
dH−1(b)

db
=

(
1
2
T− 1

2 cos θ −T
1
2 sin θ

1
2
T− 1

2 sin θ T
1
2 cos θ

)
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The polar method

H−1(b) =

(
T

1
2 cos θ

T
1
2 sin θ

)
dH−1(b)

db
=

(
1
2
T− 1

2 cos θ −T
1
2 sin θ

1
2
T− 1

2 sin θ T
1
2 cos θ

)
Therefore, ∣∣∣∣det(dH−1(b)

db

)∣∣∣∣ = 1

2
.

and

fB(T , θ) =
1

2

1

2π
e−T/2, 0 < T < +∞, 0 < θ < 2π.

Product of
▶ an exponential with mean 2: 1

2
e−T/2

▶ a uniform on [0, 2π[: 1/2π
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The polar method

Therefore
▶ R2 and θ are independent

▶ R2 is exponential with mean 2

▶ θ is uniform on (0, 2π)

Algorithm

1. Let r1 and r2 be draws from U(0, 1).

2. Let R2 = −2 ln r1 (draw from exponential of mean 2)

3. Let θ = 2πr2 (draw from U(0, 2π))

4. Let
X = R cosθ =

√
−2 ln r1 cos(2πr2)

Y = R sinθ =
√
−2 ln r1 sin(2πr2)
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The polar method
Issue
Time consuming to compute sine and cosine

Solution
Generate directly the result of the sine and the cosine

▶ Draw a random point (s1, s2) in the circle of radius one centered at (0, 0).

▶ How? Draw a random point in the square [−1, 1]× [−1, 1] and reject points
outside the circle

▶ Let (R , θ) be the polar coordinates of this point.

▶ R2 ∼ U(0, 1) and θ ∼ U(0, 2π) are independent

R2 = s21 + s22
cos θ = s1/R
sin θ = s2/R
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The polar method

Original transformation

X = R cosθ =
√
−2 ln r1 cos(2πr2)

Y = R sinθ =
√
−2 ln r1 sin(2πr2)

Draw (s1, s2) in the circle

t = s21 + s22

X = R cosθ =
√
−2 ln t s1√

t
= s1

√
−2 ln t

t

Y = R sinθ =
√
−2 ln t s2√

t
= s2

√
−2 ln t

t
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The polar method

Algorithm

1. Let r1 and r2 be draws from U(0, 1).

2. Define s1 = 2r1 − 1 and s2 = 2r2 − 1 (draws from U(−1, 1)).

3. Define t = s21 + s22 .

4. If t > 1, reject the draws and go to step 1.

5. Return

x = s1

√
−2 ln t

t
and y = s2

√
−2 ln t

t
.
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