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Discrete distributions

» Let X be a discrete r.v. with pmf:
P(X:X,') = Pi, I:1,,L

where Y © pi=1.
» The support can be finite or infinite.
» We know how to draw from U(0, 1).

» How can we draw from X7
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Inverse Transform Method: illustration

i

D3 =0.1
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Discrete distributions

Inverse transform method (discrete)
1. Draw r ~ U(0, 1).
2. Compute cumulative probabilities F, = Zf;l pi.
3. Return X = x, for the smallest k such that r < Fy.

Implementation remark
Precompute (Fy)x once and use a search (often binary search) for each draw.
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Discrete inverse transform in Python (NumPy)

import numpy as np

x = np.array([1, 2, 3, 4])
p = np.array([0.24, 0.42, 0.11, 0.23])
F = np.cumsum(p) # [0.24, 0.66, 0.77, 1.00]

rng = np.random.default_rng (2026)

r = rng.random(size=5)

k = np.searchsorted(F, r) # smallest k with r <= F[k]
samples = x[k]

print (r)

print (samples)

[0.17893481 0.63991317 0.4672684 0.37050053 0.35491733]
(1 222 2]

6/60



Discrete distributions
Acceptance-rejection
» Attributed to von Neumann.
» We want to draw from X with pmf p;.

» We know how to draw from Y with pmf g;.
Define a constant ¢ > 1 such that

&chis.t. pi > 0.

qi

Algorithm

1. Draw y from Y
2. Draw r from U(0, 1)

3. Ifr< ny' return x = y and stop. Otherwise, start again.
y
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Acceptance-rejection: analysis

Probability to be accepted during a given iteration

P(Y = y,accepted) = P(Y =y) P(acceptedY =y)

qy py/cqy
Py

C

Probability to be accepted
P(accepted) = 3  P(acceptedY =y)P(Y =y)

p
Zy %q}’
1/c.
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Acceptance-rejection: analysis

Probability to draw x at iteration n

P(X =xln) = (1— 1)1

C
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Acceptance-rejection: analysis

Reminder: geometric series:
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Acceptance-rejection: analysis

Remarks
» Average number of iterations: ¢
» The closer c is to 1, the closer the pmf of Y is to the pmf of X.
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Accept—reject: acceptance rate in practice

import numpy as np

Ezample: target p over {0,1,2,3}, proposal q uniform
np.array([0.24, 0.42, 0.11, 0.23])

= np.ones_like(p) / len(p)

= np.max(p / q) # envelope constant

0 Q0 T H#
I

rng = np.random.default_rng(123)
R = 100000
accepted = 0
for _ in range(R):
y = rng.integers (0, len(p)) # draw from gq
r = rng.random()
if r < plyl / (c * qlyl):
accepted += 1
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Accept—reject: acceptance rate in practice

print (f"cy=y{c:.3£f}")

print (f"theory acceptyrate =, {1/c:.3f}")

print (f"empirical acceptyrate, =, {accepted/R:.3f}")
c = 1.680

theory accept rate = 0.595

empirical accept rate = 0.594
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Continuous distributions
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Continuous distributions

Inverse Transform Method
» Let X be a continuous r.v. with CDF Fx(x)
» Draw r from a uniform U(0,1)
> Generate F, !(r).

Motivation
» Fx is monotonically increasing

» It implies that x; < x» is equivalent to Fx(x1) < Fx(xo).
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Inverse Transform Method
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Inverse Transform Method

More formally

» Denote Fy(x) = x the CDF of the r.v. U(0,1)
> Let G be the distribution of the r.v. Fx(U)

G(x)

Pr(Fy'(U) < x)
Pr(Fx(Fx'(U)) < Fx(x))
Pr(U < Fx(x))
Fu(Fx(x))

Fx(x)
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Inverse Transform Method

Examples: let r be a draw from U(0, 1)

Name Fx(¢) Draw
Exponential(b) 1—e /P —blinr

Logistic(,0)  1/(1+exp(—(e —pn)/0)) p—oln(t—1)

Power(n,o) (e/o)" ort/n

Note
The CDF is not always available (e.g. normal distribution).
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Continuous distributions
Rejection Method
» We want to draw from X with pdf fx.

» We know how to draw from Y with pdf fy.

Define a constant ¢ such that

Algorithm

1. Draw y from Y
2. Draw r from U(0, 1)

3. Ifr< ijfm , return x = y and stop. Otherwise, start again.

v (y)
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Rejection Method: example

Draw from a normal distribution

» Let X ~ N(0,1) and X = |X|
» Probability density function: fx(e) = \/%76—52/2, 0<e< 40
» Consider an exponential r.v. with pdf fy(¢) = e ¢, 0< e < 400
>

Then
fX(E) 2 6752/2

frle)  vor

» The ratio takes its maximum at ¢ = 1, therefore

o) W) i~ 1315,

20 /60



Rejection Method: example

Algorithm: draw from a normal
1. Draw r from U(0, 1)

. Let y = —Inr (draw from the exponential)
. Draw s from U(0,1)

2

2
3
4. 1f s<e 2 return x = y and go to step 5. Otherwise, go to step 1.
5. Draw t from U(0,1).

6

. If t < 0.5, return x. Otherwise, return —x.

Note
This procedure can be improved. See [Ross, 2012] (Chapter 5).
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Draws from the exponential
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Rejected draws
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Accepted draws
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Rejected and accepted draws
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Drawing from an unnormalized distribution

Rejection Method
» We want to draw from X with pdf

i 8x

where
K :J gx(e)de

is difficult or impossible to calculate.
» Therefore, we know gx but we don't know fx.
» We know how to draw from Y with pdf fy.
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Drawing from an unnormalized distribution

» Define a constant ¢, such that

< ¢, Ve.
fy (€)
Therefore,
x _&x _ G
fy KRy K’

and the rejection method can be applied with ¢ = ¢,/K.

» Accept probability:
x exKI1  gx

E_ KCufy _Cufy,

and K does not play any role.
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Drawing from the standard normal distribution

» Accept—reject is possible, but it is not the most efficient approach for
N(0,1).

» In practice we use specialized methods (e.g. polar / Box—Muller; Ziggurat in
many libraries).

» Polar method (no tuning, no envelope): see Appendix.
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Transformations of standard normal
» If ris a draw from N(0, 1), then

s=br+a

is a draw from N(a, b?)

» If r is a draw from N(a, b?), then

el‘

is a draw from a log normal LN(a, b?) with mean
ea+(b2/2)

and variance

e2a+b2 (eb2 —1)
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Multivariate normal

» If ri,...,r, are independent draws from N(0, 1), and

n
r = :
I'n
> then
s—a+Lr

is a vector of draws from the n-variate normal N(a, LLT), where

» [ is lower triangular, and
» LLT is the Cholesky factorization of the variance-covariance matrix
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Multivariate normal

Example:
¢; 0 O
L= ln € O

E31 €32 €33

si = lun
s, = lan + laon
s3 = l3in + lzon + L3
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Transforming draws
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Transforming draws

Method

» Consider draws from the following distributions:

» normal: N(0,1) (draws denoted by & below)
» uniform: U(0, 1) (draws denoted by r below)

» Draws R from other distributions are obtained from nonlinear transforms.

Lognormal(a,b)

1 —(Inx — a)z)
f(x) = ex R = e?tht
&) xb\/27t p( 2b?
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Transforming draws

Cauchy(a,b)

N
f(x):(nb(l—i—(xga) )) R:a-l—btan(ﬂ(r—%))

x%(a) (a integer)

X(af2)/267x/2

f(x) - 2a/2]"(a/2) R= J; E'J2
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Transforming draws

Exponential(a)
Fix)=1—e>? R=—alnr
Extreme Value(a,b)
Fix)=1—exp(—e %) R=a—bIn(—Inr)

Logistic(a,b)

Fix)=(1+e /5" R=a+bln (1 : r)
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Transforming draws

Pareto(a,b)

F(x)zl—(f)b R = a(l_r)yi/b

X

Standard symmetrical triangular distribution

R =

f(x) = 4x fo<x<1/2 rn+n
Tl 41X if1/2<x<1 5
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Transforming draws

Weibull(a,b)
F(x)=1-— e*(%)b R = a(—1Inr)i/?
Erlang(a,b) (b integer)

(X/a)b—le—x/a

f(x) = o0l R=-2a) Inr
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Choosing a sampling method

Four common situations

>
>

>

Inverse transform: exact; needs CDF and (numerical) inverse.
Accept-reject: general; needs an envelope cfy close to fx (accept rate
1/c).

Specialized methods (e.g. normal): fastest and most reliable for
standard distributions.

MCMC: for complex / unnormalized / high-dimensional targets when
global envelopes are hard.
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Monte-Carlo integration
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Monte-Carlo integration

Expectation
» X rv.onlab],ac RU{—oco}, b€ RU{+o00}
» Expectation of X:

E[X] :J xfx (x)dx.

a

» If g:R — R is a function, then

b

Elg(X)] ZJ g(x)fx(x)dx.

a
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Monte-Carlo integration

Simulation

so that
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Monte-Carlo integration

Calculating | = ffg(x)fx(x)dx

» Consider X with pdf fx.
» Convenient choice: X ~ U[0,1], as fy(x) =1, Vx.
» Generate R draws x,, r=1,..., R from X;

» Calculate
1 &
Ixl=2) glx)
r=1
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Monte-Carlo integration

Approximation error

» Sample variance:

» By simulation: as

we have
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Monte-Carlo integration

Approximation error
95% confidence interval: [T— 1.96er </ < T+ 1.96er] where

Vr
Er = F
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Monte-Carlo integration

Example

1
J e“dx =e—1=1.7183
0
» Random variable X uniformly distributed (fx(e) = 1)
> g(X) =¢e

> Var(eX) = €51 — (e — 1)% = 0.2420

R| 10 100

1000

I | 18270 1.7707 1.7287
Sample variance | 0.1607 0.2125 0.2385
Simulated variance | 0.1742 0.2197 0.2398
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Monte-Carlo integration
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Monte-Carlo integration
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Summary
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Summary

Draws from uniform distribution: available in any programming language
Inverse transform method: requires the pmf or the CDF.
Accept-reject: needs a “similar” r.v. easy to draw from.

Transforming uniform and normal draws.

vvyyVvyvyy

First application: Monte-Carlo integration.
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Appendix
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Uniform distribution: X ~ U(a, b)
pdf

_J 1/(b—a) ifa<x<b,
fxlx) = { 0 otherwise.

CDF

0 if x < g,

Fx(x) { (x—a)/(b—a) ifa<x<b,

1 if x > b.

Mean, median
(a+b)/2

Variance
(b— 3)2/12
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Normal distribution: X ~ N(a, b)

pdf

CDF

Mean, median
a

Variance
b2
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The polar method

Draw from a normal distribution
» Let X ~ N(0,1) and Y ~ N(0, 1) independent
> pdf:
1 2 1 2 1 2 2
f(x, — T e X2 av/2 = o (XHyT)/2
b y) V21 V21 27
» Let R and O such that R?> = X? + Y?, and tan® = Y/X.

(X, Y)
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The polar method
Change of variables (reminder)

» Let A be a multivariate r.v. distributed with pdf f4(a).

» Consider the change of variables b = H(a) where H is bijective and
differentiable

» Then B = H(A) is distributed with pdf

fa(b) = Fa(H1(b)) |det (dH_l(b)>'.

db

Here: A= (X,Y), B=(R?0)=(T,0)

Hl(b) = T%1 cos 0 dH=1(b) _ %T_%lcose —Tl% sin 0
T2sin0 db 1T 2sin® TzcosH

54 /60



The polar method

. T2 cos0 dH=1(b) %T_%cose —Tzsin0
H=(b) = 1. T 111 1
Tz2sin® db 5T72sin® T2cosO
Therefore, .
dH(b) 1
det | ——— || = =.
€ ( db )' 2
and 11
fo(T,0)==—e /2, 0< T <400, 0<6<2m.
2271
Product of

> an exponential with mean 2: e~ /2

» a uniform on [0, 27t[: 1/27
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The polar method

Therefore
» R? and O are independent
» R? is exponential with mean 2
» 0 is uniform on (0, 27)

Algorithm
1. Let , and r, be draws from U(0, 1).

. Let R> = —2Inr; (draw from exponential of mean 2)
. Let ® = 27tr, (draw from U(0, 27))
Let

A wN

X = Rcos® = +/—2Inr cos(27r,)
Y = Rsin0 = +/—2Inrsin(27r)
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The polar method

Issue
Time consuming to compute sine and cosine

Solution
Generate directly the result of the sine and the cosine
» Draw a random point (s;, s,) in the circle of radius one centered at (0, 0).
» How? Draw a random point in the square [—1, 1] x [—1, 1] and reject points
outside the circle
» Let (R, 0) be the polar coordinates of this point.
» R%2~ U(0,1) and © ~ U(0, 271) are independent

R? = s2+4s2
cos0 = s5/R
sind = s/R
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The polar method

Original transformation

X = Rcos® = +/—2Inr cos(27mr)
Y = Rsin0 = /—2Inrsin(27r)

Draw (s, s) in the circle

t = s?+s3
X = Rcos® = \/—2Int“\s/—1E = g /=2t

\/ t
Y = Rsin0 = \/—2Int\5/—2E = 5 /—2t|nt
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The polar method

Algorithm

1. Let  and r, be draws from U(0, 1).
Define s; =2, — 1 and s, = 2r, — 1 (draws from U(—1,1)).
Define t = s? + s2.

If t > 1, reject the draws and go to step 1.

—2Int —2Int
X =5 . and y = s, .

ok W

Return
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