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Course map

Model & Uncertainty
Specify inputs, randomness, and mechanisms

Simulation
Generate synthetic outcomes and assess performance

Decide / Optimize
Search for better configurations under uncertainty
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Course map

Lecture sequence

1. Introduction to simulation

2. Drawing from distributions

3. The Poisson process

4. Discrete events simulation

5. Statistical analysis and bootstrapping

6. Variance reduction

7. Markov chain Monte Carlo methods

8. Introduction to optimization (heuristics)

9. Multi-objective optimization
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Course map

What you will be able to do

▶ Build a simulator and generate reliable outputs (not just one run).

▶ Quantify uncertainty (confidence intervals, bootstrap) and reduce variance.

▶ Use Monte Carlo and MCMC to sample complex distributions.

▶ Optimize decisions using simulation outputs (single- and multi-objective).
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Engineering systems

Definition (Wikipedia)
Combination of components that work in
synergy to collectively perform a useful function.

Properties

▶ Complex

▶ Large

▶ Designed

▶ Configurable

▶ Interactions with external world
Source: Wikipedia
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Engineering systems

Objectives

▶ Design

▶ Maintain

▶ Operate

Time horizon
▶ Long-term

▶ Medium-term

▶ Short-term
Source: Swiss Learning Exchange
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Engineering systems

Mathematical and digital twins

▶ Modeling

▶ Simulation

▶ Optimization

Source: Konica Minolta
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Engineering systems

Modeling Simulation Optimization
Roles Represent Predict Improve
How? Capture causal

effects
Capture the
propagation of
uncertainty

Investigate
better configu-
rations
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Modeling
System
A system can be represented as follows:

z = h(x , y , u; θ)

External input — yControl — u

Complex system — state x

Indicators — z
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Modeling

z = h(x , y , u; θ)

Example
A car:

▶ x captures the state of the system (e.g. speed, position of other vehicles)

▶ y captures external influences (e.g. wind)

▶ u captures possible human controls on the system (e.g.
acceleration/deceleration)

▶ z represents indicators of performance (e.g. oil consumption).
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Modeling

Decompose the complexity

▶ The model h is usually decomposed to reflect the interactions of the
subsystems

▶ For example,
▶ a car-following model captures the target speed of the driver,
▶ an engine model derives the actual consumption as a function of the

acceleration.

13 / 63



Modeling

Causal effects
▶ Very important to identify the

causal effects

▶ Failure to do so may generate
wrong conclusions

Forecasting
Assumption: causal effects are stable
over time and configurations of the
system.
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Data can be misleading
Chocolate Consumption, Cognitive Function, and Nobel Laureates

Source: [Messerli, 2012] 15 / 63



Inference

Data collection
On an existing system, collect N observations of xn, yn, un, zn, n = 1, . . . ,N .

Goodness of fit
For a given value of θ, “distance” dn(θ) between

▶ the predicted value h(xn, yn, un; θ), and

▶ the observed value zn.

Inference
Find θ̂ that minimizes the total distance:

θ̂ = argminθ

N∑
n=1

dn(θ).
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Simulation

Simulation is more than simply applying the model.

z = h(x , y , u; θ̂)

External input — yControl — u

Complex system — state x

Indicators — z



Simulation

Z = h(X ,Y ,U ; θ̂) + εz

External input — yControl — u

Complex system — state x

Indicators — z

εyεu

εx

εz
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Simulation

Propagation of uncertainty

Z = h(X ,Y ,U ; θ̂) + εz

▶ Given the distribution of X , Y , U and εz

▶ what is the distribution of Z?
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Why is it difficult?

Arithmetic of random variables
▶ Let X and Y be two random variables (assume independent for now)

▶ Define a new random variable

Z = X + Y

▶ What is the probability distribution of Z?

Analytical solution
The probability density function of Z is given by a convolution:

fZ (z) =

∫∞
−∞ fX (x) fY (z − x) dx
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Independence is convenient, dependence is common

In practice, variables are rarely independent

▶ Correlated inputs: demand, weather, incidents, prices.

▶ Common shocks: one event affects many components simultaneously.

▶ Time dependence: queues, inventories, fatigue, learning.

Takeaway

▶ Convolutions become harder; analytical results become rarer.

▶ Simulation remains straightforward: sample the joint distribution and
propagate it through h.
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Why propagate uncertainty?

Key difficulty

▶ Convolution integrals quickly become intricate.

▶ Closed-form expressions are rare.

▶ The situation worsens for nonlinear functions or many variables.

▶ Independence is convenient, but dependence is common.

▶ Convolutions become harder; analytical results become rarer.
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Example: sum of two uniform random variables

Assumptions

X ∼ U(0, 1), Y ∼ U(0, 1), Z = X + Y

Result (after convolution)
The density of Z is triangular:

fZ (z) =



0, z < 0,

z , 0 ⩽ z ⩽ 1,

2− z , 1 < z ⩽ 2,

0, z > 2.
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Simulation: propagate uncertainty numerically

Core idea
▶ Generate numerical values that follow the distribution of interest

▶ Apply standard arithmetic to these values

▶ Let empirical distributions replace analytical formulas

Draws from a random variable
▶ Let X have pdf fX
▶ A draw from X is a numerical value generated according to fX
▶ Consider independent draws X1, . . . ,XR
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Simulation: propagate uncertainty numerically

Key convergence property (Law of Large Numbers)
Assume X1, . . . ,XR are i.i.d. draws from fX . For any interval [a, b],

1

R

R∑
i=1

1{Xi ∈ [a, b]}
a.s.−−−→

R→∞
∫ b

a

fX (x) dx .

Preview
Later, MCMC generates dependent draws; convergence still holds under
additional conditions.
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Illustration: simulation replaces convolution

Procedure
▶ Draw X1, . . . ,XR ∼ U(0, 1)

▶ Draw Y1, . . . ,YR ∼ U(0, 1)

▶ Compute
Zr = Xr + Yr , r = 1, . . . ,R

▶ Analyze the empirical distribution of Zr
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Illustration: simulation replaces convolution
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Illustration: simulation replaces convolution

Key message

▶ No integrals, no convolutions

▶ Only draws and simple arithmetic

▶ The distribution of Z emerges automatically
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Simulation

Z = h(X ,Y ,U ; θ̂) + εz

External input — yControl — u

Complex system — state x

Indicators — z

εyεu

εx

εz
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Simulation

Sampling

▶ Draw realizations of X , Y , U , εz
▶ Call them x r , y r , ur , εrz
▶ For each r , compute

z r = h(x r , y r , ur ; θ̂) + εrz

▶ z r are draws from the random variable Z

Analysis

▶ Generate many draws from Z .

▶ Analyze their empirical distribution.
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Importance of number of draws
Theory vs. practice

▶ Theory: true distribution of Z when r → ∞.

▶ Practice: finite number R of draws.

▶ If R is too small, simulator output is just noise.

Analogy with real world

▶ Nature also generates instances of a complex random variable.

▶ Experiments must be repeated in order to reach conclusions.

Example: policy analysis

▶ The real impact of a policy is difficult to analyze.

▶ Incomplete results consistent with expectations may lead to erroneous
conclusions.
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Two sources of variability
Two different questions

▶ Output uncertainty (system variability): how variable is Z itself?

▶ Monte Carlo error (estimation noise): how accurate is Z̄R as an
estimate of E[Z ]?

Key distinction

▶ Even if Z is highly variable, Z̄R can be estimated accurately with large R .

▶ Even if Z is not very variable, Z̄R can look noisy when R is small.

Typical relationship (i.i.d. runs)

Var(Z̄R) =
Var(Z )

R
⇒ Monte Carlo error decreases as 1/

√
R .
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Example: enhancing road safety

Traffic accidents in Switzerland
▶ The Swiss Federal Roads Office has proposed new safety measures.

▶ The initiative aims to identify accident-prone locations and significantly
lower speed limits in those areas.

▶ The TCS has organized a referendum opposing these measures, arguing that
they are not sufficiently effective in improving safety and significantly hinder
mobility.

▶ You have been tasked with evaluating the actual effectiveness of these safety
measures.
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Example: enhancing road safety

Methodology: simulation

▶ Simulate the number of accidents before and after the implementation of
the safety measures.

▶ Based on existing literature, the number of accidents in Switzerland can be
modeled using a uniform distribution ranging from 0 to 12.
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Current situation: simulated number of accidents
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Identification of dangerous spots
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Implementation of the measures
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After implementation: simulated number of accidents

9

2

6
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Analysis

Data
▶ Before: 12 + 11 + 11 = 34 accidents

▶ After: 9 + 2 + 6 = 17 accidents

▶ 50% reduction.

Conclusion
As expected, safety measures reduce the number
of accidents.
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Example: enhancing road safety
Major flaws

▶ Causal effects are not accounted for in the model.

▶ The simulation was performed using only a single run.

▶ Not all locations were re-simulated.

▶ Confidence in the conclusions is strengthened by their alignment with
expectations.

What should have been done
▶ Run multiple simulations to estimate accident occurrences more robustly.

▶ The expected average number of accidents should be around 6 at all
locations, regardless of the speed limit.

▶ A formal statistical test would likely fail to reject the null hypothesis,
suggesting that the speed limit has no measurable effect in the simulation.
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Simulation

Derivation of indicators from the distribution
▶ Mean

▶ Variance

▶ Modes

▶ Quantiles
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Statistics

Indicators
▶ Mean: E[Z ] ≈ Z̄R = 1

R

∑R
r=1 z

r

▶ Sample variance:
Var(Z ) ≈ s2R = 1

R−1

∑R
r=1(z

r − Z̄R)
2

▶ Modes: based on the histogram

▶ Quantiles: sort and select

Important: there is more than the mean
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The mean

[Savage et al., 2012]
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The mean

The flaw of averages

[Savage et al., 2012]

E[Z ] = E[h(X ,Y ,U ; θ̂) + εz ] ̸= h(E[X ], E[Y ], E[U ]; θ̂) + E[εz ]

... except if h is linear.
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There is more than the mean

Example

▶ Intersection with capacity 2000 veh/hour

▶ Traffic light: 30 sec green / 30 sec red

▶ Constant arrival rate: 2000 veh/hour during 30
minutes

▶ With 30% probability, capacity at 80%.

▶ Indicator: Average time spent by travelers
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There is more than the mean
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Pitfalls of simulation

Few number of runs
▶ Run time is prohibitive

▶ Tempting to generate partial results rather than no result

Focus solely on the mean

▶ The mean is useful, but not sufficient.

▶ For complex distributions, it may be misleading.

▶ Intuition from normal distribution (mode = mean, symmetry) do not hold in
general.

▶ Important to investigate the whole distribution.

▶ Simulation allows to do it easily.
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Challenges

▶ How to generate draws from Z?

▶ How to represent complex systems? (specification of h)

▶ How large R should be?

▶ How good is the approximation?
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Pseudo-random numbers

Definition
▶ Deterministic sequence of numbers

▶ which have the appearance of draws from a U(0, 1) distribution

Typical sequence

xn = axn−1 modulo m

▶ This has a period of the order of m

▶ So, m should be a large prime number

▶ For instance: m = 231 − 1 and a = 75

▶ xn/m lies in the [0, 1[ interval
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Pseudo-random numbers

Modern practice

▶ We almost never implement RNGs ourselves.

▶ We use tested generators from standard libraries (period, equidistribution,
statistical quality).

▶ What matters in practice: seeds (reproducibility) and independent
replications.
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Pseudo-random numbers

Python/Numpy example (reproducibility)

import numpy as np

rng1 = np.random.default_rng (2026)

x1 = rng1.uniform (0.0, 1.0, size =5)

print(x1)

rng2 = np.random.default_rng (2026)

x2 = rng2.uniform (0.0, 1.0, size =5)

print(x2)

[0.17893481 0.63991317 0.4672684 0.37050053 0.35491733]

[0.17893481 0.63991317 0.4672684 0.37050053 0.35491733]
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Pseudo-random numbers
Python/Numpy example (independent replications)

import numpy as np

master = np.random.default_rng (12345)

seeds = master.integers(0, 2**63 - 1, size =3)

for r, s in enumerate(seeds):

rng = np.random.default_rng(int(s))

x = rng.normal(size =1000)

print(f"Replication␣{r}:␣mean={x.mean ():.3f},␣std={x.std ():.3f}")

Replication 0: mean =0.014 , std =1.009

Replication 1: mean =-0.015, std =0.992

Replication 2: mean =-0.058, std =0.999
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Pseudo-random numbers

What this shows
▶ Different replications produce different realizations.

▶ Summary statistics fluctuate around their theoretical values.

▶ Re-running the script produces identical output (reproducibility).
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Outline of the lectures on simulation

▶ Drawing from distributions

▶ Discrete event simulation

▶ Data analysis

▶ Variance reduction

▶ Markov Chain Monte Carlo

Reference
[Ross, 2012]
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Optimization

Assumptions

▶ Control U is deterministic.

Z (u) = h(X ,Y , u) + εz

▶ Various features of Z are considered: mean, variance, quantile, etc.

(z1(u), . . . , zm(u))

▶ They are combined in a single indicator:

f (u) = g(z1(u), . . . , zm(u))

▶ If not, it is called multi-objective optimization.
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General framework: the black box

External input — yControl — u

Complex system — state x

Indicators — z

εy

εx

εzf (u)
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Optimization problem

min
u∈Rn

f (u)

subject to
u ∈ U ⊆ Rn

▶ u: decision variables

▶ f (u): objective function

▶ u ∈ U: constraints

▶ U: feasible set
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In this course. . .

▶ Classical optimization problems

▶ Heuristics

▶ Multi-objective optimization
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Summary
Modeling

▶ Decomposition of the complexity.

▶ Causal effects.

Simulation
▶ Propagation of uncertainty.

▶ Requires many draws.

▶ Analysis of the entire empirical distribution.

▶ There is more than the mean.

Optimization

▶ Identify the control that improves a function of the indicators.

▶ Optional: multi-objective optimization.
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