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Multi-objective optimization

Concept

▶ Need for minimizing several objective functions.

▶ In many practical applications, the objectives are conflicting.

▶ Improving one objective may deteriorate several others.

Examples

▶ Transportation: maximize level of service, minimize costs.

▶ Finance: maximize return, minimize risk.

▶ Survey: maximize information, minimize number of questions (burden).
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Multi-objective optimization

min
x

F (x) =

 f1(x)
...

fP(x)


subject to

x ∈ F ⊆ Rn,

where
F : Rn → RP .
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Dominance

Dominance
Consider x1, x2 ∈ Rn. x1 is dominating x2 if

1. x1 is no worse in any objective

∀i ∈ {1, . . . , p}, fi(x1) ≤ fi(x2),

2. x1 is strictly better in at least one objective

∃i ∈ {1, . . . , p}, fi(x1) < fi(x2).

Notation
x1 dominates x2: F (x1) ≺ F (x2).
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Dominance

Properties

▶ Not reflexive: x ⊀ x

▶ Not symmetric: x ≺ y ̸⇒ y ≺ x

▶ Instead: x ≺ y ⇒ y ⊀ x

▶ Transitive: x ≺ y and y ≺ z ⇒ x ≺ z

▶ Not complete: ∃x , y : x ⊀ y and y ⊀ x
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Dominance: example

f1

f2

x3

x1

x4

x2

F (x3) ≺ F (x2)
F (x3) ≺ F (x1)
F (x1) ̸≺ F (x4)
F (x4) ̸≺ F (x1)
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Optimality

Pareto optimality
The vector x∗ ∈ F is Pareto optimal if it is not dominated by any feasible
solution:

∄x ∈ F such that F (x) ≺ F (x∗).

Intuition
x∗ is Pareto optimal if no objective can be improved without degrading at least
one of the others.
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Optimality

Weak Pareto optimality
The vector x∗ ∈ F is weakly Pareto optimal if there is no x ∈ F such that
∀i = 1, . . . , p,

fi(x) < fi(x
∗),

Pareto optimality

▶ P∗: set of Pareto optimal solutions

▶ WP∗: set of weakly Pareto optimal solutions

▶ P∗ ⊆ WP∗ ⊆ F
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Dominance: example

f1

f2

x3

x1

x4

x2

▶ x3: Pareto optimal.

▶ x1, x3, x4: weakly Pareto optimal.
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Pareto frontier

Pareto optimal set

P∗ = {x∗ ∈ F |∄x ∈ F : F (x) ≺ F (x∗)}

Pareto frontier

PF ∗ = {F (x∗)|x ∈ P∗}
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Pareto frontier

f1

f2

F
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Weighted sum

Weights
For each i = 1, . . . , p, wi > 0 is the weight of objective i .

Optimization

min
x∈F

p∑
i=1

wi fi(x). (1)

Comments
▶ Weights may be difficult to interpret in practice.

▶ Generates a Pareto optimal solution.

▶ In the convex case, if x∗ is Pareto optimal, there exists a set of weights such
that x∗ is the solution of (1)
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Weighted sum: example

Train service
▶ f1: minimize travel time

▶ f2: minimize number of trains

▶ f3: maximize number of passengers

Definition of the weights

▶ Transform each objective into monetary costs.

▶ Travel time: use value-of-time.

▶ Number of trains: estimate the cost of running a train.

▶ Number of passengers: estimate the revenues generated by the passengers.
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Goal programming

Goals
For each i = 1, . . . , p, gi is the “ideal” or “target” objective function defined by
the modeler.

Optimization

min
x∈F

∥F (x) − g∥ℓ = ℓ

√√√√ p∑
i=1

|Fi(x) − gi |ℓ

Issue
Not really optimizing the objectives
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Lexicographic optimization

Sorted objective
Assume that the objectives are sorted from the most important (i = 1) to the
least important (i = p).

First problem

f ∗1 = min
x∈F

f1(x)

ℓth problem

f ∗ℓ = min fℓ(x)

subject to
x ∈ F

fi(x) = f ∗i , i = 1, . . . , ℓ− 1.
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ε-lexicographic optimization
Sorted objective and tolerances

▶ Assume that the objectives are sorted from the most important (i = 1) to
the least important (i = p).

▶ For each i = 1, . . . , p, εi ≥ 0 is a tolerance on the objective fi .

First problem

f ∗1 = min
x∈F

f1(x)

ℓth problem

f ∗ℓ = min fℓ(x)

subject to
x ∈ F

fi(x) ≤ f ∗i + εi , i = 1, . . . , ℓ− 1.
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ε-constraints formulation

Reference objective and upper bounds

▶ Select a reference objective ℓ ∈ {1, . . . , p}.

▶ Impose an upper bound εi on each other objective.

Constrained optimization

min
x∈F

fℓ(x)

subject to
fi(x) ≤ εi , i ̸= ℓ.

Property
If a solution exists, it is weakly Pareto optimal.
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Local search

Main difference with single objective
Maintain a set P of potential Pareto optimal solutions

∀x , y ∈ P,F (x) ̸≺ F (y) and F (y) ̸≺ F (x).

Initialization
Start with a first set P of candidate solutions.

Main iteration
▶ Select randomly x from P and consider x+ a neighbor of x .

▶ Define
D(x+) = {y ∈ P such that F (x+) ≺ F (y)}.

▶ Define
S(x+) = {y ∈ P such that F (y) ≺ F (x+)}.
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Local search

Main iteration
▶ If S(x+) = ∅

P+ = P ∪ {x+} \D(x+).

Property of P+

∀x , y ∈ P+,F (x) ̸≺ F (y) and F (y) ̸≺ F (x).

Proof
▶ For x , y different from x+, already valid in P .

▶ Consider x+, y ∈ P+:
▶ y ∈ P+ ⇒ y ̸∈ D(x+) ⇒ F (x+) ̸≺ F (y).
▶ x+ ∈ P+ ⇒ S(x+) = ∅ ⇒ y ̸∈ S(x+) ⇒ F (y) ̸≺ F (x+).
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Example: priced knapsack

Utility Weight Cost
80 84 0.50328447
31 27 0.41431774
48 47 0.07765353
17 22 0.75842330
27 21 0.14050556
84 96 0.72089439
34 42 0.11669739
39 46 0.56723896
46 54 0.02430532
58 53 0.01255171
23 32 0.03059062
67 78 0.17285314
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Example: local search with neighborhood k = 4
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Variable Neighborhood Search

▶ Neighborhood of size 1 Pareto solutions: 1

▶ Neighborhood of size 2 Pareto solutions: 16

▶ Neighborhood of size 3 Pareto solutions: 16

▶ Neighborhood of size 4 Pareto solutions: 16

▶ Neighborhood of size 5 Pareto solutions: 16

▶ Neighborhood of size 6 Pareto solutions: 16

▶ Neighborhood of size 7 Pareto solutions: 18

▶ Neighborhood of size 8 Pareto solutions: 19

▶ Neighborhood of size 9 Pareto solutions: 19

▶ Neighborhood of size 10 Pareto solutions: 19

▶ Neighborhood of size 11 Pareto solutions: 19

▶ Neighborhood of size 12 Pareto solutions: 19

▶ Pareto solutions: 19
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Variable Neighborhood Search
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Conclusion

Problem definition
▶ Need for trade-offs.

▶ Concept of Pareto frontier.

Algorithms

▶ Heuristics.

▶ Most of time driven by problem knowledge.
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