Optimization and Simulation

Variance reduction

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

Outline

Anthitetic draws

Control variates

Other techniques

Use simulation to compute

$$I=\int_0^1 e^x \ dx$$

We know the solution: e - 1 = 1.7183

Simulation: consider draws two by two

- Let r_1, \ldots, r_R be independent draws from U(0, 1).
- Let s_1, \ldots, s_R be independent draws from U(0, 1).

$$I pprox rac{1}{2R} \left(\sum_{i=1}^R e^{r_i} + \sum_{i=1}^R e^{s_i}
ight) = rac{1}{R} \sum_{i=1}^R rac{e^{r_i} + e^{s_i}}{2}$$

Simulation: consider draws two by two

- Use R = 10'000 (that is, a total of 20'000 draws)
- Mean over R draws from $(e^{r_i} + e^{s_i})/2$: 1.720, variance: 0.123.

Now, use half the number of draws

• Idea: if $X \sim U(0,1)$, then $(1-X) \sim U(0,1)$

• Let r_1, \ldots, r_R be independent draws from U(0, 1).

$$I \approx rac{1}{R} \sum_{i=1}^{R} rac{e^{r_i} + e^{1-r_i}}{2}$$

▶ Use *R* = 10′000

- Mean over *R* draws of $(e^{r_i} + e^{1-r_i})/2$: 1.7183, variance: 0.00388.
- Compared to: mean of $(e^{r_i} + e^{s_i})/2$: 1.720, variance: 0.123.

1,500 Independent Antithetic 1,000 Frequency 500 0 1.5 1.72 2.5 2 1

Antithetic draws

Let X₁ and X₂ i.d. r.v. with mean θ.
 Then

$$\operatorname{Var}\left(\frac{X_1+X_2}{2}\right) = \frac{1}{4}\left(\operatorname{Var}(X_1) + \operatorname{Var}(X_2) + 2\operatorname{Cov}(X_1,X_2)\right).$$

- If X_1 and X_2 are independent, then $Cov(X_1, X_2) = 0$.
- ► If X₁ and X₂ are negatively correlated, then Cov(X₁, X₂) < 0, and the variance is reduced.</p>

Back to the example

Independent draws

$$X_1 = e^U, X_2 = e^U$$

$$Var(X_1) = Var(X_2) = E[e^{2U}] - E[e^U]^2$$

$$= \int_{0}^{1} e^{2x} dx - (e-1)^{2}$$

= $\frac{e^{2}-1}{2} - (e-1)^{2}$
= 0.2420

 $\operatorname{Cov}(X_1, X_2) = 0$

$$\operatorname{Var}\left(\frac{X_1+X_2}{2}\right) = \frac{1}{4}\left(0.2420 + 0.2420\right) = 0.1210$$

Back to the example

Antithetic draws

•
$$X_1 = e^U$$
, $X_2 = e^{1-U}$
 $Var(X_1) = Var(X_2) = 0.2420$

$$Cov(X_1, X_2) = E[e^{U}e^{1-U}] - E[e^{U}]E[e^{1-U}]$$

= e - (e-1)(e-1)
= -0.2342

$$\operatorname{Var}\left(\frac{X_1 + X_2}{2}\right) = \frac{1}{4}\left(0.2420 + 0.2420 - 2\ 0.2342\right) = 0.0039$$

Antithetic draws: generalization

Suppose that

$$X_1=h(U_1,\ldots,U_m),$$

where U_1, \ldots, U_m are i.i.d. U(0, 1).

Define

$$X_2 = h(1 - U_1, \ldots, 1 - U_m).$$

X₂ has the same distribution as X₁

- ▶ If *h* is monotonic in each of its coordinates, then *X*₁ and *X*₂ are negatively correlated.
- ▶ If *h* is not monotonic, there is no guarantee that the variance will be reduced.

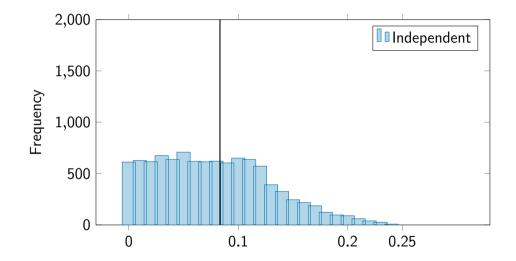
$$I = \int_0^1 \left(x - \frac{1}{2} \right)^2 dx$$

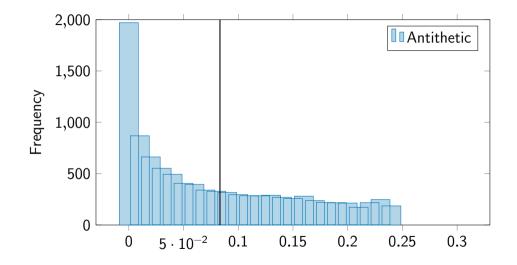
$$X_1 = \left(U - \frac{1}{2}\right)^2, \ X_2 = \left((1 - U) - \frac{1}{2}\right)^2$$

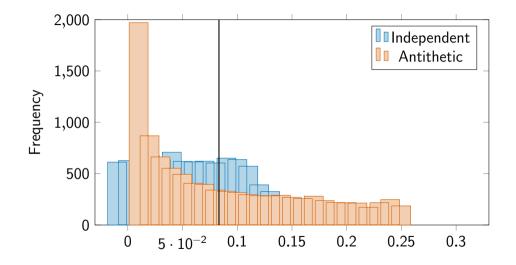
► The covariance is positive:

$$\operatorname{Cov}(X_1, X_2) = \frac{1}{180} > 0.$$

► The variance will therefore be (slightly) increased!







Outline

Anthitetic draws

Control variates

Other techniques

- We use simulation to estimate θ = E[X], where X is an output of the simulation.
- Let Y be another output of the simulation, such that we know E[Y] = μ.
 We consider the quantity:

$$Z = X + c(Y - \mu).$$

• By construction,
$$E[Z] = E[X]$$
.

Its variance is

 $\operatorname{Var}(Z) = \operatorname{Var}(X + cY) = \operatorname{Var}(X) + c^{2} \operatorname{Var}(Y) + 2c \operatorname{Cov}(X, Y).$

Find c such that Var(Z) is minimum.

First derivative:

 $2c \operatorname{Var}(Y) + 2 \operatorname{Cov}(X, Y).$

Zero if

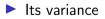
$$c^* = -rac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}.$$

Second derivative:

 $2\operatorname{Var}(Y) > 0.$

► We use

$$Z^* = X - \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}(Y - \mu).$$



$$\operatorname{Var}(Z^*) = \operatorname{Var}(X) - \frac{\operatorname{Cov}(X, Y)^2}{\operatorname{Var}(Y)} \leq \operatorname{Var}(X).$$

In practice...

• Cov(X, Y) and Var(Y) are usually not known.

▶ We can use their sample estimates:

$$\widehat{\operatorname{Cov}}(X,Y) = \frac{1}{n-1} \sum_{r=1}^{R} (X_r - \bar{X})(Y_r - \bar{Y}),$$

and

$$\widehat{\operatorname{Var}}(Y) = \frac{1}{n-1} \sum_{r=1}^{R} (Y_r - \bar{Y})^2.$$

In practice...

Alternatively, use linear regression

$$X = aY + b + \varepsilon$$

where $\varepsilon \sim N(0, \sigma^2)$.

▶ The least square estimators of *a* and *b* are

$$\hat{a} = \frac{\widehat{\operatorname{Cov}}(X, Y)}{\widehat{\operatorname{Var}}(Y)} = \frac{\sum_{r=1}^{R} (X_r - \bar{X})(Y_r - \bar{Y})}{\sum_{r=1}^{R} (Y_r - \bar{Y})^2}$$
$$\hat{b} = \bar{X} - \hat{a}\bar{Y}.$$

$$c^* = -\hat{a}.$$

$$\begin{aligned} \hat{b} + \hat{a}\mu &= \bar{X} - \hat{a}\bar{Y} + \hat{a}\mu \\ &= \bar{X} - \hat{a}(\bar{Y} - \mu) \\ &= \bar{X} + c^*(\bar{Y} - \mu) \\ &= \widehat{\theta}. \end{aligned}$$

• Therefore, the control variate estimate $\hat{\theta}$ of θ is obtained by the estimated linear model, evaluated at μ .

Back to the example

• Use simulation to compute
$$I = \int_0^1 e^x dx$$
.

$$X = e^{t} .$$

•
$$Y = U$$
, $E[Y] = 1/2$, $Var(Y) = 1/12$.

•
$$Cov(X, Y) = (3 - e)/2 \approx 0.14$$

▶ Therefore, the best *c* is

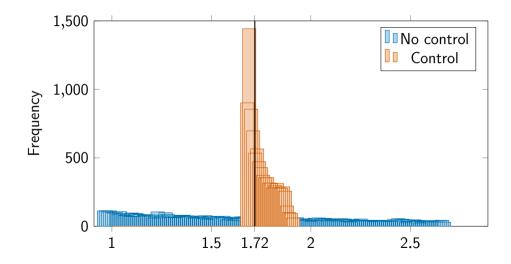
$$c^* = -rac{\mathrm{Cov}(X,Y)}{\mathrm{Var}(Y)} = -6(3-e) \approx -1.69.$$

▶ Test with *R* = 10′000.

• Result of the regression: $\hat{a} = 1.6893$, $\hat{b} = 0.8734$.

• Estimate: $\hat{b} + \hat{a}/2 = 1.7180$, Variance: 0.003847 (compared to 0.24).

Back to the example

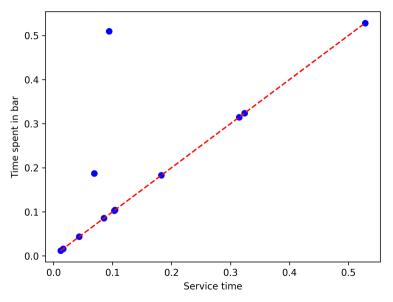


Satellite simulation

Variables

- ► X: average time spent by the customers in the bar.
- ► Y: average service time.

Satellite simulation: one run



Satellite simulation

True value of E[Y]

• The average service time $\mu = 0.2$ is known.

Therefore,

$$E[Y] = \mu = 0.2.$$

Important

Do not use simulated values to calculate this quantity.

Satellite simulation:

Scenario: closure: 100, inter-arrival time: 1

	R	Service time	$\mathrm{E}[\pmb{X}]$	$\mathrm{E}[Z]$	$\operatorname{Var}[X]$	$\operatorname{Var}[Z]$
0	1000	0.1	0.1115	0.1111	0.0001676	3.129e-05
1	10000	0.1	0.1107	0.1111	0.0001857	3.153e-05
2	100000	0.1	0.1110	0.1110	0.0001827	3.111e-05
3	1000	1	7.665	7.771	21.91	12.74
4	10000	1	7.820	7.800	22.23	13.66
5	100000	1	7.780	7.773	22.04	13.69
6	1000	3	102.3	102.2	509.1	275.5
7	10000	3	102.9	102.9	532.5	302.4
8	100000	3	103.0	102.9	526.2	303.2

Comments

- > The true value μ of the mean of the control variable Y must be available.
- Using the sample mean does **not** work.
- ▶ The higher the correlation between *X* and *Y*, the better.

Outline

Anthitetic draws

Control variates

Other techniques

Variance reductions techniques

Other techniques

- Conditioning
- Stratified sampling
- Importance sampling
- Draw recycling

In general

Correlation helps!