Optimization and Simulation Drawing from distributions

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

Outline

Discrete distributions

Continuous distributions

Transforming draws

Monte-Carlo integration

Summary

Appendix

Discrete distributions

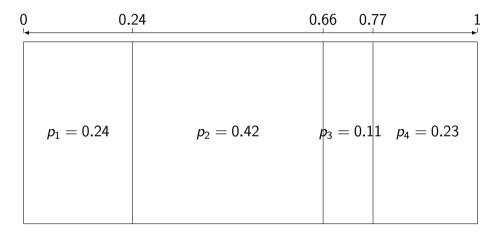
Let X be a discrete r.v. with pmf:

$$P(X = x_i) = p_i, i = 0, ...,$$

where $\sum_{i} p_{i} = 1$.

- ▶ The support can be finite or infinite.
- ▶ We know how to draw from U(0,1).
- \blacktriangleright How can we draw from X?

Inverse Transform Method: illustration



Discrete distributions

Inverse transform method

- 1. Let r be a draw from U(0,1).
- 2. Initialize k = 0, p = 0.
- 3. $p = p + p_k$.
- 4. If r < p, set $X = x_k$ and stop.
- 5. Otherwise, set k = k + 1 and go to step 3.

Discrete distributions

Acceptance-rejection

- Attributed to von Neumann.
- ightharpoonup We want to draw from X with pmf p_i .
- ▶ We know how to draw from Y with pmf q_i .

Define a constant c > 1 such that

$$\frac{p_i}{a_i} \le c \ \forall i \ \text{s.t.} \ p_i > 0.$$

Algorithm

- 1. Draw y from Y
- 2. Draw r from U(0,1)
- 3. If $r < \frac{p_y}{ca_y}$, return x = y and stop. Otherwise, start again.

Probability to be accepted during a given iteration

$$P(Y = y, \text{accepted}) = P(Y = y) \quad P(\text{accepted}|Y = y)$$

= $q_y \qquad p_y/cq_y$
= $\frac{p_y}{c}$

Probability to be accepted

$$\begin{array}{rcl} P(\mathsf{accepted}) & = & \sum_{y} P(\mathsf{accepted}|Y=y) P(Y=y) \\ & = & \sum_{y} \frac{\rho_{y}}{cq_{y}} q_{y} \\ & = & 1/c. \end{array}$$

Probability to draw x at iteration n

$$P(X = x|n) = (1 - \frac{1}{c})^{n-1} \frac{p_x}{c}$$

$$P(X = x) = \sum_{n=1}^{+\infty} P(X = x | n)$$

$$= \sum_{n=1}^{+\infty} \left(1 - \frac{1}{c}\right)^{n-1} \frac{p_x}{c}$$

$$= c \frac{p_x}{c}$$

$$= p_x.$$

Reminder: geometric series:

$$\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$$

Remarks

- Average number of iterations: c
- ightharpoonup The closer c is to 1, the closer the pmf of Y is to the pmf of X.

Outline

Discrete distributions

Continuous distributions

Transforming draws

Monte-Carlo integration

Summary

Appendix

Continuous distributions

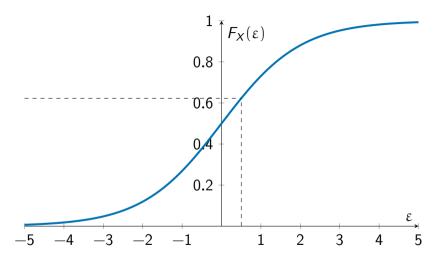
Inverse Transform Method

- Let X be a continuous r.v. with CDF $F_X(\varepsilon)$
- ▶ Draw r from a uniform U(0,1)
- Generate $F_X^{-1}(r)$.

Motivation

- $ightharpoonup F_X$ is monotonically increasing
- ▶ It implies that $\varepsilon_1 \leq \varepsilon_2$ is equivalent to $F_X(\varepsilon_1) \leq F_X(\varepsilon_2)$.

Inverse Transform Method



Inverse Transform Method

More formally

- ▶ Denote $F_U(\varepsilon) = \varepsilon$ the CDF of the r.v. U(0,1)
- ▶ Let *G* be the distribution of the r.v. $F_x^{-1}(U)$

$$\begin{split} G(\varepsilon) &= & \Pr(F_X^{-1}(U) \leq \varepsilon) \\ &= & \Pr(F_X(F_X^{-1}(U)) \leq F_X(\varepsilon)) \\ &= & \Pr(U \leq F_X(\varepsilon)) \\ &= & F_U(F_X(\varepsilon)) \\ &= & F_X(\varepsilon) \end{split}$$

Inverse Transform Method

Examples: let r be a draw from U(0,1)

Name	$F_X(\varepsilon)$	Draw
Exponential(b)	$1-e^{-arepsilon/b}$	$-b \ln r$
Logistic (μ, σ)	$1/(1+\exp(-(\epsilon-\mu)/\sigma))$	$\mu - \sigma \ln(\frac{1}{r} - 1)$
		,
Power (n,σ)	$(\varepsilon/\sigma)^n$	$\sigma r^{1/n}$

Note

The CDF is not always available (e.g. normal distribution).

Continuous distributions

Rejection Method

- ▶ We want to draw from X with pdf f_X .
- \blacktriangleright We know how to draw from Y with pdf f_Y .

Define a constant c such that

$$\frac{f_X(\varepsilon)}{f_Y(\varepsilon)} \le c \ \forall \varepsilon$$

Algorithm

- 1. Draw y from Y
- 2. Draw r from U(0,1)
- 3. If $r < \frac{f_X(y)}{cf_Y(y)}$, return x = y and stop. Otherwise, start again.

Rejection Method: example

Draw from a normal distribution

- Let $\bar{X} \sim N(0,1)$ and $X = |\bar{X}|$
- ▶ Probability density function: $f_X(\varepsilon) = \frac{2}{\sqrt{2\pi}} e^{-\varepsilon^2/2}, 0 < \varepsilon < +\infty$
- ▶ Consider an exponential r.v. with pdf $f_Y(\varepsilon) = e^{-\varepsilon}$, $0 < \varepsilon < +\infty$
- ► Then

$$\frac{f_X(\varepsilon)}{f_Y(\varepsilon)} = \frac{2}{\sqrt{2\pi}} e^{\varepsilon - \varepsilon^2/2}$$

▶ The ratio takes its maximum at $\varepsilon = 1$, therefore

$$\frac{f_X(\varepsilon)}{f_Y(\varepsilon)} \le \frac{f_X(1)}{f_Y(1)} = \sqrt{2e/\pi} \approx 1.315.$$

▶ Rejection method, with $\frac{f_X(\varepsilon)}{cf_Y(\varepsilon)} = \frac{1}{\sqrt{e}}e^{\varepsilon - \varepsilon^2/2} = e^{\varepsilon - \frac{\varepsilon^2}{2} - \frac{1}{2}} = e^{-\frac{(\varepsilon - 1)^2}{2}}$

Rejection Method: example

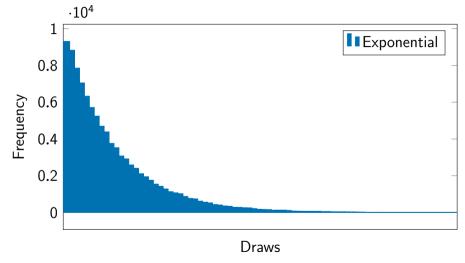
Algorithm: draw from a normal

- 1. Draw r from U(0,1)
- 2. Let $y = -\ln r$ (draw from the exponential)
- 3. Draw s from U(0,1)
- 4. If $s < e^{-\frac{(y-1)^2}{2}}$ return x = y and go to step 5. Otherwise, go to step 1.
- 5. Draw t from U(0,1).
- 6. If $t \le 0.5$, return x. Otherwise, return -x.

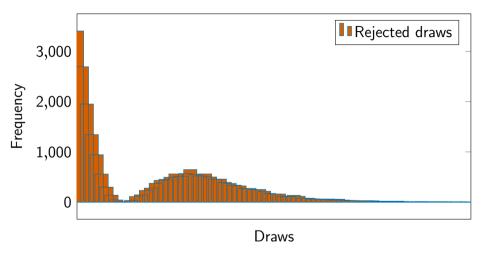
Note

This procedure can be improved. See [Ross, 2012] (Chapter 5).

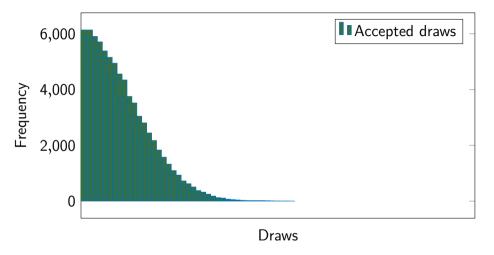
Draws from the exponential



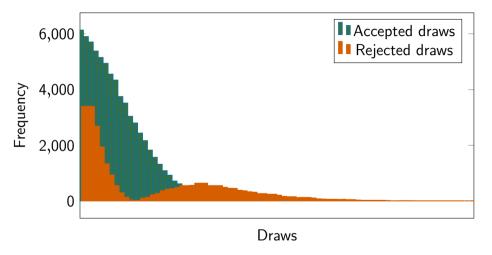
Rejected draws



Accepted draws



Rejected and accepted draws



Drawing from an unnormalized distribution

Rejection Method

▶ We want to draw from X with pdf

$$f_X=rac{g_X}{K},$$

where

$$K = \int_{\varepsilon} g_X(\varepsilon) d\varepsilon$$

is difficult or impossible to calculate.

- ▶ Therefore, we know g_X but we don't know f_X .
- \blacktriangleright We know how to draw from Y with pdf f_Y .

Drawing from an unnormalized distribution

▶ Define a constant c,, such that

$$\frac{g_X(\varepsilon)}{f_Y(\varepsilon)} \leq c_u \,\forall \varepsilon.$$

Therefore,

$$\frac{f_X}{f_Y} = \frac{g_X}{Kf_Y} \le \frac{c_u}{K},$$

and the rejection method can be applied with $c = c_u/K$.

Accept probability:

$$\frac{f_X}{cf_Y} = \frac{g_X}{K} \frac{K}{c_u} \frac{1}{f_Y} = \frac{g_X}{c_u f_Y},$$

and K does not play any role.

Drawing from the standard normal distribution

- ► Accept/reject algorithm is not efficient
- ► Polar method: no rejection (see appendix)

Transformations of standard normal

▶ If r is a draw from N(0,1), then

$$s = br + a$$

is a draw from $N(a, b^2)$

▶ If r is a draw from $N(a, b^2)$, then

 e^{r}

is a draw from a log normal $LN(a, b^2)$ with mean

$$e^{a+(b^2/2)}$$

and variance

$$e^{2a+b^2}(e^{b^2}-1)$$

Multivariate normal

▶ If $r_1,...,r_n$ are independent draws from N(0,1), and

$$r = \left(\begin{array}{c} r_1 \\ \vdots \\ r_n \end{array}\right)$$

then

$$s = a + Lr$$

is a vector of draws from the *n*-variate normal $N(a, LL^T)$, where

- L is lower triangular, and
- ► LL^T is the Cholesky factorization of the variance-covariance matrix

Multivariate normal

Example:

$$L = \begin{pmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix}$$

$$s_1 = \ell_{11}r_1$$

$$s_2 = \ell_{21}r_1 + \ell_{22}r_2$$

$$s_3 = \ell_{31}r_1 + \ell_{32}r_2 + \ell_{33}r_3$$

Outline

Discrete distributions

Continuous distributions

Transforming draws

Monte-Carlo integration

Summary

Appendix

Method

- ► Consider draws from the following distributions:
 - ▶ normal: N(0,1) (draws denoted by ξ below)
 - ightharpoonup uniform: U(0,1) (draws denoted by r below)
- ▶ Draws *R* from other distributions are obtained from nonlinear transforms.

Lognormal(a,b)

$$f(x) = \frac{1}{xb\sqrt{2\pi}} \exp\left(\frac{-(\ln x - a)^2}{2b^2}\right) \qquad R = e^{a+b\xi}$$

Cauchy(a,b)

$$f(x) = \left(\pi b \left(1 + \left(\frac{x-a}{b}\right)^2\right)\right)^{-1}$$
 $R = a + b \tan\left(\pi (r - \frac{1}{2})\right)^{-1}$

 $\chi^2(a)$ (a integer)

$$f(x) = \frac{x^{(a-2)/2}e^{-x/2}}{2^{a/2}\Gamma(a/2)}$$
 $R = \sum_{j=1}^{a} \xi_j^2$

Exponential(a)

$$F(x) = 1 - e^{-x/a}$$
 $R = -a \ln r$

Extreme Value(a,b)

$$F(x) = 1 - \exp(-e^{-(x-a)/b})$$
 $R = a - b\ln(-\ln r)$

Logistic(a,b)

$$F(x) = (1 + e^{-(x-a)/b})^{-1}$$
 $R = a + b \ln \left(\frac{r}{1-r}\right)$

Pareto(a,b)

$$F(x) = 1 - \left(\frac{a}{x}\right)^b$$
 $R = a(1-r)^{-1/b}$

Standard symmetrical triangular distribution

$$f(x) = \begin{cases} 4x & \text{if } 0 \le x \le 1/2 \\ 4(1-x) & \text{if } 1/2 \le x \le 1 \end{cases} \qquad R = \frac{r_1 + r_2}{2}$$

Weibull(a,b)

$$F(x) = 1 - e^{-(\frac{x}{a})^b}$$
 $R = a(-\ln r)^{1/b}$

Erlang(a,b) (b integer)

$$f(x) = \frac{(x/a)^{b-1}e^{-x/a}}{a(b-1)!}$$
 $R = -a\sum_{j=1}^{b} \ln r_j$

Outline

Discrete distributions

Continuous distributions

Transforming draws

Monte-Carlo integration

Summary

Appendix

Monte-Carlo integration

Expectation

- \blacktriangleright X r.v. on [a, b], $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$
- ► Expectation of *X*:

$$E[X] = \int_a^b x f_X(x) dx.$$

▶ If $g : \mathbb{R} \to \mathbb{R}$ is a function, then

$$E[g(X)] = \int_a^b g(x) f_X(x) dx.$$

Simulation

$$\mathrm{E}[g(X)] \approx \frac{1}{R} \sum_{r=1}^{K} g(x_r).$$

Approximating the integral

$$\int_a^b g(x)f_X(x)dx = \lim_{R \to \infty} \frac{1}{R} \sum_{r=1}^R g(x_r).$$

so that

$$\int_a^b g(x)f_X(x)dx \approx \frac{1}{R} \sum_{r=1}^R g(x_r).$$

Calculating
$$I = \int_a^b g(x) f_X(x) dx$$

- ightharpoonup Consider X with pdf f_X .
- ▶ Convenient choice: $X \sim U[0, 1]$, as $f_U(x) = 1$, $\forall x$.
- ▶ Generate R draws x_r , r = 1, ..., R from X;
- Calculate

$$I \approx \widehat{I} = \frac{1}{R} \sum_{r=1}^{R} g(x_r).$$

Approximation error

Sample variance:

$$V_R = \frac{1}{R-1} \sum_{r=1}^{R} (g(x_r) - \widehat{I})^2.$$

▶ By simulation: as

$$\operatorname{Var}[g(X)] = \operatorname{E}[g(X)^2] - \operatorname{E}[g(X)]^2,$$

we have

$$V_R \approx \frac{1}{R} \sum_{r=1}^{R} g(x_r)^2 - \widehat{I}^2.$$

Approximation error

95% confidence interval: $[\widehat{I} - 1.96e_R \le I \le \widehat{I} + 1.96e_R]$ where

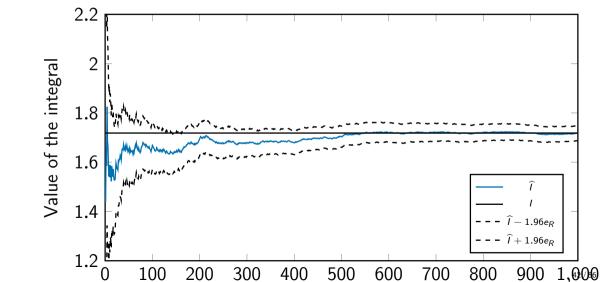
$$e_R = \sqrt{rac{V_R}{R}}.$$

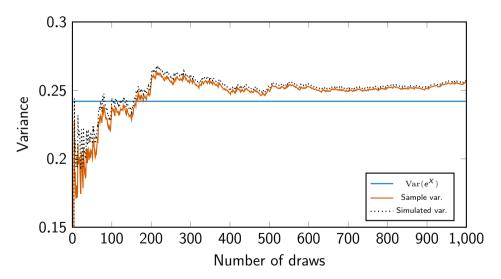
Example

$$\int_0^1 e^x dx = e - 1 = 1.7183$$

- ▶ Random variable X uniformly distributed $(f_X(\varepsilon) = 1)$
- $ightharpoonup g(X) = e^X$
- $\operatorname{Var}(e^X) = \frac{e^2-1}{2} (e-1)^2 = 0.2420$

<i>R</i>	10	100	
Sample variance Simulated variance	1.8270	1.7707	1.7287
Sample variance	0.1607	0.2125	0.2385
Simulated variance	0.1742	0.2197	0.2398





Outline

Discrete distributions

Continuous distributions

Transforming draws

Monte-Carlo integration

Summary

Appendix

Summary

- Draws from uniform distribution: available in any programming language
- Inverse transform method: requires the pmf or the CDF.
- ► Accept-reject: needs a "similar" r.v. easy to draw from.
- Transforming uniform and normal draws.
- ► First application: Monte-Carlo integration.

Outline

Discrete distributions

Continuous distributions

Transforming draws

Monte-Carlo integration

Summary

Appendix

Uniform distribution: $X \sim U(a, b)$ pdf

$$f_X(x) = \left\{ egin{array}{ll} 1/(b-a) & ext{if } a \leq x \leq b, \ 0 & ext{otherwise.} \end{array}
ight.$$

CDF

$$F_X(x) = \begin{cases} 0 & \text{if } x \le a, \\ (x-a)/(b-a) & \text{if } a \le x \le b, \\ 1 & \text{if } x > b. \end{cases}$$

$$(a \pm b)/2$$

Variance $(b-a)^2/12$

Normal distribution: $X \sim N(a, b)$

pdf

$$f_X(x) = \frac{1}{b\sqrt{2\pi}} \exp\left(-\frac{(x-a)^2}{2b^2}\right)$$

CDF

$$F_X(x) = \int_{-\infty}^x f_X(t) dt.$$

Mean, median

а

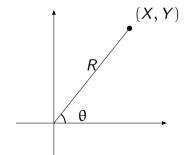
Variance b²

Draw from a normal distribution

- Let $X \sim N(0,1)$ and $Y \sim N(0,1)$ independent
- pdf:

$$f(x,y) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} = \frac{1}{2\pi} e^{-(x^2+y^2)/2}.$$

Let R and θ such that $R^2 = X^2 + Y^2$, and $\tan \theta = Y/X$.



Change of variables (reminder)

- Let A be a multivariate r.v. distributed with pdf $f_A(a)$.
- ▶ Consider the change of variables b = H(a) where H is bijective and differentiable
- ▶ Then B = H(A) is distributed with pdf

$$f_B(b) = f_A(H^{-1}(b)) \left| \det \left(\frac{dH^{-1}(b)}{db} \right) \right|.$$

Here:
$$A = (X, Y), B = (R^2, \theta) = (T, \theta)$$

$$H^{-1}(b) = \begin{pmatrix} T^{\frac{1}{2}}\cos\theta \\ T^{\frac{1}{2}}\sin\theta \end{pmatrix} \frac{dH^{-1}(b)}{db} = \begin{pmatrix} \frac{1}{2}T^{-\frac{1}{2}}\cos\theta & -T^{\frac{1}{2}}\sin\theta \\ \frac{1}{2}T^{-\frac{1}{2}}\sin\theta & T^{\frac{1}{2}}\cos\theta \end{pmatrix}$$

$$H^{-1}(b) = \begin{pmatrix} T^{\frac{1}{2}}\cos\theta \\ T^{\frac{1}{2}}\sin\theta \end{pmatrix} \frac{dH^{-1}(b)}{db} = \begin{pmatrix} \frac{1}{2}T^{-\frac{1}{2}}\cos\theta & -T^{\frac{1}{2}}\sin\theta \\ \frac{1}{2}T^{-\frac{1}{2}}\sin\theta & T^{\frac{1}{2}}\cos\theta \end{pmatrix}$$

Therefore,

$$\left| \det \left(\frac{dH^{-1}(b)}{db} \right) \right| = \frac{1}{2}.$$

and

$$f_B(T,\theta) = \frac{1}{2} \frac{1}{2\pi} e^{-T/2}, \ \ 0 < T < +\infty, \ \ 0 < \theta < 2\pi.$$

Product of

- ▶ an exponential with mean 2: $\frac{1}{2}e^{-T/2}$
- ightharpoonset a uniform on $[0, 2\pi[: 1/2\pi]]$

Therefore

- $ightharpoonup R^2$ and θ are independent
- $ightharpoonup R^2$ is exponential with mean 2
- \triangleright θ is uniform on $(0, 2\pi)$

Algorithm

- 1. Let r_1 and r_2 be draws from U(0,1).
- 2. Let $R^2 = -2 \ln r_1$ (draw from exponential of mean 2)
- 3. Let $\theta = 2\pi r_2$ (draw from $U(0, 2\pi)$)
- 4. Let

$$X = R \cos \theta = \sqrt{-2 \ln r_1} \cos(2\pi r_2)$$

$$Y = R \sin \theta = \sqrt{-2 \ln r_1} \sin(2\pi r_2)$$

Issue

Time consuming to compute sine and cosine

Solution

Generate directly the result of the sine and the cosine

- ▶ Draw a random point (s_1, s_2) in the circle of radius one centered at (0, 0).
- ▶ How? Draw a random point in the square $[-1,1] \times [-1,1]$ and reject points outside the circle
- Let (R, θ) be the polar coordinates of this point.
- $ightharpoonup R^2 \sim U(0,1)$ and $\theta \sim U(0,2\pi)$ are independent

$$R^2 = s_1^2 + s_2^2$$

$$\cos \theta = s_1/R$$

$$\sin \theta = s_2/R$$

Original transformation

$$X = R \cos \theta = \sqrt{-2 \ln r_1} \cos(2\pi r_2)$$

$$Y = R \sin \theta = \sqrt{-2 \ln r_1} \sin(2\pi r_2)$$

Draw (s_1, s_2) in the circle

$$t = s_1^2 + s_2^2 X = R \cos \theta = \sqrt{-2 \ln t} \frac{s_1}{\sqrt{t}} = s_1 \sqrt{\frac{-2 \ln t}{t}} Y = R \sin \theta = \sqrt{-2 \ln t} \frac{s_2}{\sqrt{t}} = s_2 \sqrt{\frac{-2 \ln t}{t}}$$

Algorithm

- 1. Let r_1 and r_2 be draws from U(0,1).
- 2. Define $s_1 = 2r_1 1$ and $s_2 = 2r_2 1$ (draws from U(-1, 1)).
- 3. Define $t = s_1^2 + s_2^2$.
- 4. If t > 1, reject the draws and go to step 1.
- 5. Return

$$x = s_1 \sqrt{\frac{-2 \ln t}{t}}$$
 and $y = s_2 \sqrt{\frac{-2 \ln t}{t}}$.

Bibliography

Ross, S. (2012). Simulation.

Academic Press, fifth edition edition.