Optimization and Simulation

Discrete Events Simulation

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

Simulation of a system

Keep track of variables

- Time variable t : amount of time that has elapsed.
- Counter variables: count events having occurred by t
- System state variables.

Events

- List of future events sorted in chronological order
- Process the next event:
- remove the first event in the list,
- update the variables,
- generate new events, if applicable (keep the list sorted),
- collect statistics.

Discrete Event Simulation: an example

Cloe at Satellite

- Cloe has applied to be a waiter at Satellite
- According to her experience, she pretends to be able to serve in average one customer per minute.
- In order to make the decision to hire Cloe or not, the manager wants to know:
- In average, how much time will a customer

bar • concerts • cafés-théâtres

Discrete Event Simulation: an example

Context

- When a customer arrives, she is served if Cloe is free. Otherwise, she joins the queue.
- Customers are served using a "first come, first served" logic.
- When Cloe has finished serving a customer,
- she starts serving the next customer in line, or
- waits for the next customer to arrive if the queue is empty.
- The amount of time required by Cloe to serve a customer is a random variable X_{s} with pdf f_{s}.
- The amount of time between the arrival of two customers is a random variable X_{a} with pdf f_{a}.
- Satellite does not accept the arrival of customers after time T.

Discrete Event Simulation: an example

Variables

Time:	t	
Counters:	N_{A}	number of arrivals
	N_{D}	number of departures
System state:	n	number of customers in the system

Event list

- Next arrival. Time: t_{A}
- Service completion for the customer currently being served. Time: t_{D} (∞ if no customer is being served).
- The bar closes. Time: T.

List management

- The number of events is always 3 in this example.
- We just need to update the times, and keep them sorted.

Initialization

Variables

- Time: $t=0$.
- Counters: $N_{A}=N_{D}=0$.
- State: $n=0$.
- First event: arrival of first customer: draw r from f_{a}.
- Events list:
- $t_{A}=r$,
- $t_{D}=\infty$,
- T (bar closes).

Statistics to collect

- $A(i)$ arrival of customer i.
- $D(i)$ departure of customer i.
- T_{p} time after T that the last customer departs.

Case 1: arrival of a customer

If $t_{A}=\min \left(t_{A}, t_{D}, T\right)$

- Time $t=t_{A}$: we move along to time t_{A}.
- Counter $N_{A}=N_{A}+1$: one more customer arrived.
- State $n=n+1$: one more customer in the system.
- Next arrival:
- draw r from f_{a},
- $t_{A}=t+r$.
- Service time: if $n=1$ (she is served immediately)
- draw s from f_{s},
- $t_{D}=t+s$.
- Statistics: $A\left(N_{A}\right)=t$.

Case 2: departure of a customer

If $t_{D}=\min \left(t_{A}, t_{D}, T\right), t_{D}<t_{A}$

- Time $t=t_{D}$: we move along to time t_{D}.
- Counter $N_{D}=N_{D}+1$: one more customer departed.
- State $n=n-1$: one less customer in the system.
- Service time: if $n=0$, then $t_{D}=\infty$. Otherwise,
- draw s from f_{s},
- $t_{D}=t+s$.
- Statistics: $D\left(N_{D}\right)=t$.

Case 3: after hours

If $T<\min \left(t_{A}, t_{D}\right)$
(1) Customers are still waiting: $n>0$

- Time $t=t_{D}$: we move along to time t_{D}.
- Counter $N_{D}=N_{D}+1$: one more customer departed.
- State $n=n-1$: one less customer in the system.
- Service time: if $n>0$, then
- draw s from f_{s},
- $t_{D}=t+s$.
- Statistics: $D\left(N_{D}\right)=t$.
(2) No more customers: $n=0$
- Statistics: $T_{p}=\max (t-T, 0)$.

An instance

Scenario

- Service time: exponential with mean 1.0
- Inter-arrival time: exponential with mean 1.0
- Closing time: 10.0

An instance (ctd.)

Event	t	NA	ND	n	tA	tD	T
Arrival	0.94	1	0	1	1.48	3.22	10.0
Arrival	1.48	2	0	2	2.01	3.22	10.0
Arrival	2.01	3	0	3	3.16	3.22	10.0
Arrival	3.16	4	0	4	3.44	3.22	10.0
Departure	3.22	4	1	3	3.44	3.49	10.0
Arrival	3.44	5	1	4	3.81	3.49	10.0
Departure	3.49	5	2	3	3.81	3.91	10.0
Arrival	3.81	6	2	4	7.22	3.91	10.0
Departure	3.91	6	3	3	7.22	5.84	10.0
Departure	5.84	6	4	2	7.22	5.88	10.0
Departure	5.88	6	5	1	7.22	6.49	10.0
Departure	6.49	6	6	0	7.22	∞	10.0
Arrival	7.22	7	6	1	7.42	7.38	10.0

An instance (ctd.)

Event	t	NA	ND	n	tA	tD	T
\ldots							
Departure	7.38	7	7	0	7.42	∞	10.0
Arrival	7.42	8	7	1	8.58	8.42	10.0
Departure	8.42	8	8	0	8.58	∞	10.0
Arrival	8.58	9	8	1	9.64	9.91	10.0
Arrival	9.64	10	8	2	10.7	9.91	10.0
Departure	9.91	10	9	1	10.7	10.7	10.0
After hours	10.7	10	10	0	10.7	10.7	10.0
Finish	10.7	10	10	0	10.7	10.7	10.0

An instance (ctd.)

Statistics for each customer (rounded)

Cust.	Arrival	Departure	Time
1	0.94	3.22	2.28
2	1.48	3.49	2.02
3	2.01	3.91	1.9
4	3.16	5.84	2.68
5	3.44	5.88	2.45
6	3.81	6.49	2.68
7	7.22	7.38	0.165
8	7.42	8.42	1.0
9	8.58	9.91	1.33
10	9.64	10.7	1.02

An instance (ctd.)

Aggregate indicators

- Average time in the system: 1.75
- Cloe leaves Satellite at 10.7

Realizations

- This represents one draw from the random variables.
- Multiple draws are necessary.
- Remember the pitfalls of simulation.

Another instance

Scenario: Cloe works faster

- Service time: exponential with mean 0.2
- Inter-arrival time: exponential with mean 1.0
- Closing time: 10.0

Another instance (ctd.)

Event	t	NA	ND	n	tA	tD	T
Arrival	1.02	1	0	1	3.14	1.38	10.0
Departure	1.38	1	1	0	3.14	∞	10.0
Arrival	3.14	2	1	1	6.97	3.25	10.0
Departure	3.25	2	2	0	6.97	∞	10.0
Arrival	6.97	3	2	1	7.08	7.26	10.0
Arrival	7.08	4	2	2	7.24	7.26	10.0
Arrival	7.24	5	2	3	10.0	7.26	10.0
Departure	7.26	5	3	2	10.0	8.32	10.0
Departure	8.32	5	4	1	10.0	8.51	10.0
Departure	8.51	5	5	0	10.0	∞	10.0
Finish	10.0	5	5	0	10.0	∞	10.0

Another instance (ctd.)

Statistics for each customer (rounded)

Cust.	Arrival	Departure	Time
1	1.02	1.38	0.355
2	3.14	3.25	0.11
3	6.97	7.26	0.296
4	7.08	8.32	1.24
5	7.24	8.51	1.27

Aggregate indicators

- Average time in the system: 0.654
- Cloe leaves Satellite at 10.0.
- He stops working at 8.51.

General framework

$$
Z=h(X, Y, U)+\varepsilon_{Z}
$$

State variables X

- Time
- Number of customers in the system

External input Y
Arrival of customers

Control U
Serving customers

General framework

Indicators Z

- Time of each customer in the system.
- Average time in the system.
- Time at which Cloe leaves Satellite.

Statistics

- Numbers reported above are based on one instance.
- Insufficient to draw any conclusion (remember Kid City)
- Their distribution has to be investigated.
- Many realizations are necessary.

Statistics

Possible confusion in terminology

- The desired indicator Z may be a statistic from the simulator:
- Mean time spent in the system
- Maximum time spent in the system
- Number of customers spending more than α min. in the system
- Still, each of them is a random variable, and statistics must be considered.
- 5% quantile of the mean time spent in the system
- Mean of the maximum time spent in the system
- Mean of the mean time spent in the system
- Standard deviation of the mean time spent in the system
- Standard deviation of the number of customers spending more than α in the system
- Drawing histograms is highly recommended

Statistics

Average time spent in the system (service time: 0.2 , arrival: 1.0)

Mean: 0.13, \%days $>0.4: 6.9$

Statistics

Arrival rate: $\lambda=0.1$
$\operatorname{Pr}($ first customer arrives before $T)=1-e^{-\lambda T}=63.2 \%$
In our simulation, 618 days out of 1000 .

Statistics: remove empty days

Average time spent in the system (service time: 0.2 , arrival: 1.0)

Mean: 0.20, \%days>0.4: 11.2%

Conclusion

Strengths of discrete event simulation

- Decomposition of a complex system into simple subsystems.
- Easy to mimick a real system

Challenges

- Importance of book-keeping.
- Easy to be overwhelmed by generated data. Careful statistical analysis is needed.
- Importance to distinguish between an indicator and the statistics of its distribution.

