Optimization and Simulation
 Optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

Outline

(1) Motivation

(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4. Summary

Optimization

Procedure

- Mathematical modeling.
- Selection of an algorithm.
- Solving the problem.

Optimization

Mathematical modeling

- Decision variables x.
- Objective function f.
- Constraints X.

Optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

subject to

$$
x \in X \subseteq \mathbb{R}^{n}
$$

Optimization

Selection of an algorithm

- Mathematical properties of the model.
- Linear optimization.
- Convex optimization.
- Mixed integer linear optimization.
- Differentiable optimization.

Optimization

Solving the problem

- Implement, or obtain the code of the algorithm.
- Import the data.
- Solve.

General framework

$$
Z=h(X, Y, U)+\varepsilon_{z}
$$

General framework

Assumptions

- Control U is deterministic.

$$
Z(u)=h(X, Y, u)+\varepsilon_{z}
$$

- Various features of Z are considered: mean, variance, quantile, etc.

$$
\left(z_{1}(u), \ldots, z_{m}(u)\right)
$$

- They are combined in a single indicator:

$$
f(u)=g\left(z_{1}(u), \ldots, z_{m}(u)\right)
$$

General framework: example

Rico at Satellite

- X : number of customers in the bar
- Y : arrivals of customers
- u: service time of Rico
- $Z(u)$: waiting time of the customers
- $z_{1}(u)$: mean waiting time
- $z_{2}(u)$: maximum waiting time
- $f(u)=g\left(z_{1}(u), z_{2}(u)\right)=z_{1}+z_{2}$

General framework: the black box

Optimization problem

$$
\min _{u \in \mathbb{R}^{n}} f(u)
$$

subject to

$$
u \in \mathcal{U} \subseteq \mathbb{R}^{n}
$$

- u: decision variables
- $f(u)$: objective function
- $u \in \mathcal{U}$: constraints
- \mathcal{U} : feasible set

Optimization problem

Combinatorial optimization

- f and \mathcal{U} have no specific property.
- f is a black box.
- \mathcal{U} is a finite set of valid configurations.
- No optimality condition is available.

Optimization methods

Exact methods (branch and bound)

- Finds the optimal solution.
- Suffers from the curse of dimensionality.
- Requires the availability of valid and tight bounds.

Approximation algorithms

- Finds a sub-optimal solution.
- Guarantees a bound on the quality of the solution.
- Mainly used for theoretical purposes.

Heuristics

- Smart exploration of the solution space.
- No guarantee about optimality.
- Few assumptions about the problem.

Outline

(1) Motivation

(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4. Summary

The knapsack problem

- Patricia prepares a hike in the mountain.
- She has a knapsack with capacity W kg.
- She considers carrying a list of n items.
- Each item has a utility u_{i} and a weight w_{i}.
- What items should she take to maximize the total utility, while fitting in the knapsack?

Mathematical model

Decision variables

$$
x_{i}= \begin{cases}1 & \text { if item } i \text { goes into the knapsack } \\ 0 & \text { otherwise }\end{cases}
$$

Objective function

$$
\max f(x)=\sum_{i=1}^{n} u_{i} x_{i}
$$

Constraints

$$
\begin{aligned}
\sum_{i=1}^{n} w_{i} x_{i} & \leq W \\
x_{i} & \in\{0,1\} \quad i=1, \ldots, n
\end{aligned}
$$

Instance

$n=12$
Maximum weight: 300.

Item	Utility	Weight
1	80	84
2	31	27
3	48	47
4	17	22
5	27	21
6	84	96
7	34	42
8	39	46
9	46	54
10	58	53
11	23	32
12	67	78

Real example

Portfolio optimization

- Items: potential assets.
- Utility: return.
- Weight: risk.
- Capacity: maximum risk.

Traveling salesman problem

The problem

- Consider n cities.
- For any pair (i, j) of cities, the distance $d_{i j}$ between them is known.
- Find the shortest possible itinerary that starts from the home town of the salesman, visit all other cities, and come back to the origin.

TSP: example

Lausanne, Geneva, Zurich, Bern

Home town: Lausanne
3 possibilities (+ their symmetric version):

- $\mathrm{L} \rightarrow \mathrm{B} \rightarrow \mathrm{Z} \rightarrow \mathrm{G} \rightarrow \mathrm{L}: 572 \mathrm{~km}$
- $\mathrm{L} \rightarrow \mathrm{B} \rightarrow \mathrm{G} \rightarrow \mathrm{Z} \rightarrow \mathrm{L}: 769 \mathrm{~km}$
- $\mathrm{L} \rightarrow \mathrm{Z} \rightarrow \mathrm{B} \rightarrow \mathrm{G} \rightarrow \mathrm{L}: 575 \mathrm{~km}$

TSP: 12 cities (euclidean dist.)

(6)
(5)
(8)
(H)

(7)

(11)
\square

Integer linear optimization problem

Linear optimization

$$
\min _{x \in \mathbb{R}^{n}} c^{T} x
$$

Integer Linear optimization

$$
\min _{x \in \mathbb{R}^{n}} c^{\top} x
$$

subject to

$$
\begin{aligned}
A x & =b \\
x & \geq 0 .
\end{aligned}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$.

$$
\begin{aligned}
A x & =b \\
x & \in \mathbb{N} .
\end{aligned}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and
$c \in \mathbb{R}^{n}$.

Feasible set

Polyhedron
Intersection polyhedron/integer lattice

Example

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{2}}-3 x_{1}-13 x_{2} \\
& \\
& 2 x_{1}+9 x_{2} \leq 40 \\
& 11 x_{1}-8 x_{2} \leq 82 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{N}
\end{aligned}
$$

subject to

Example

Outline

(1) Motivation

(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4. Summary

Outline

(1) Motivation
(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4. Summary

Brute force algorithm

$$
\min _{u \in \mathbb{R}^{n}} f(u)
$$

subject to

$$
u \in \mathcal{U} \subseteq \mathbb{R}^{n}
$$

Brute force algorithm

- $f^{*}=+\infty$
- For each $x \in \mathcal{U}$, if $f(x)<f^{*}$ then $x^{*}=x, f^{*}=f\left(x^{*}\right)$.

Knapsack problem

Enumeration

- Each object can be in or out, for a total of 2^{n} combinations.
- For each of them, we must:
- Check that the weight is feasible.
- If so, calculate the utility and check if it is better than f^{*}.

Python implementation

```
import numpy as np
import itertools
utility = np.array([80, 31, 48, 17, 27, 84, 34, 39, 46, 58, 23, 67])
weight = np.array([84, 27, 47, 22, 21, 96, 42, 46, 54, 53, 32, 78])
capacity = 300
n = len(utility)
fstar = -np.inf
xstar = None
for c in itertools.product([0, 1], repeat = n):
    w = np.inner(c, weight)
    if w <= capacity:
        u = np.inner(c, utility)
        if u > fstar:
            xstar = c
            fstar = u
```

Solution: $(1,1,1,1,1,0,0,1,0,1,0,0)$. Weight: 300 . Utility: 300.

Knapsack problem

Computational time

- About $2 n$ floating point operations per combination.
- Assume a 1 Teraflops processor: 10^{12} floating point operations per second.

Knapsack problem

Computational time

- If $n=34$, about 1 second to solve.
- If $n=40$, about 1 minute.
- If $n=45$, about 1 hour.
- If $n=50$, about 1 day.
- If $n=58$, about 1 year.
- If $n=69$, about 2583 years, more than the Christian Era.
- If $n=78$, about $1,500,000$ years, time elapsed since Homo Erectus appeared on earth.
- If $n=91$, about 10^{10} years, roughly the age of the universe.

Traveling salesman problem

Python code

```
fstar = np.inf
xstar = None
for t in itertools.permutations(names[1:]):
    tour = ['0']+list(t)
    tl = tsp.tourLength(tour)
    if tl < fstar:
        xstar = tour
        fstar = tl
```

TSP with 12 cities

- 11! = 39916800 permutations.
- Running time: about 5 minutes.
- Solution: H-4-3-2-6-1-5-9-10-11-7-8
- Tour length: 128.762

Optimal solution

Integer optimization

$$
\min _{x \in \mathbb{R}^{2}}-3 x_{1}-13 x_{2}
$$

subject to

$$
\begin{array}{rll}
2 x_{1}+9 x_{2} & \leq 40 \\
11 x_{1}-8 x_{2} & \leq 82 \\
x_{1}, x_{2} & \geq 0 \\
x_{1}, x_{2} & \in \mathbb{N} &
\end{array}
$$

Feasible set: 36 solutions

Brute force algorithm

Comments

- Very simple to implement.
- Works only for small instances.
- Curse of dimensionality.
- Running time increases exponentially with the size of the problem.
- Not a reasonable option.

Outline

(1) Motivation
(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4. Summary

Greedy heuristics

Principles

- Step by step construction of a feasible solution.
- At each step, a local optimization is performed.
- Decisions taken at previous steps are definitive.

Properties

- Easy to implement.
- Short computational time.
- May generate poor solutions.
- Used to generate initial solutions.

The knapsack problem

Greedy heuristic

- Sort the items by decreasing order of u_{i} / w_{i}.
- For each item in this order, put it in the sack if it fits.

The knapsack problem

Item	Utility	Weight	Ratio
1	80	84	0.952
2	31	27	1.148
3	48	47	1.021
4	17	22	0.773
5	27	21	1.286
6	84	96	0.875
7	34	42	0.810
8	39	46	0.848
9	46	54	0.852
10	58	53	1.094
11	23	32	0.719
12	67	78	0.859

The knapsack problem

Item	Utility	Weight	Ratio	Order	Remaining capacity
1	80	84	0.952	5	68
2	31	27	1.148	2	252
3	48	47	1.021	4	152
4	17	22	0.773		
5	27	21	1.286	1	279
6	84	96	0.875	6	-28
7	34	42	0.810		
8	39	46	0.848		199
9	46	54	0.852		
10	58	53	1.094	3	
11	23	32	0.719		
12	67	78	0.859		

Utility: 244 (Opt: 300). Weight: 232.

The traveling salesman problem

Greedy heuristic

- Start from home.
- At each step, select the closest city as the next one.

TSP: 12 cities

(8)

11
(7)

(6)
(5)

4
3

TSP: 12 cities

(6)
(5)
(1)
(2)

(3)

TSP: 12 cities

(5)
(6)
(1)
(2)

(3)

TSP: 12 cities

(5)
(6)
(1)
(2)

(3)

TSP: 12 cities

(1)
(2)

(3)

TSP: 12 cities

(1) (2)

(3)

TSP: 12 cities

(4)

TSP: 12 cities

(4)

TSP: 12 cities

(10)

(4)

TSP: 12 cities

(10)

TSP: 12 cities

TSP: 12 cities

TSP: 12 cities

Integer optimization

Intuitive approach

- Solve the continuous relaxation.
- Round the solution.

Example

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{2}}-3 x_{1}-13 x_{2} \\
& 2 x_{1}+9 x_{2} \leq 40 \\
& 11 x_{1}-8 x_{2} \leq 82 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{N}
\end{aligned}
$$

subject to

Relaxation: feasible set

Optimal solution of the relaxation

Integrality constraints

Infeasible neighbors

Solution of the integer optimization problem

Issues

- There are 2^{n} different ways to round. Which one to choose?
- Rounding may generate an infeasible solution.
- The rounded solution may be far from the optimal solution.

Greedy heuristics

Comments

- Fast.
- Easy to implement.
- Useful to find an initial solution.
- Feasibility is usually the main issue (rounding issues with ILP).

Outline

(1) Motivation
(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4 Summary

Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification
Escape from local minima

Neighborhood

Concept

- The feasible set is too large.
- We need to explore it in a smart way.
- Idea: at each iteration, restrict the optimization problem to a small feasible subset that can be enumerated.
- The small subset is called a neighborhood.
- It is a sorted list of solutions.
- Ideally, all these solutions must be feasible.
- Neighborhoods can be constructed incrementally during the algorithms.

Neighborhood types

Fundamental neighborhood structure

- Obtained from simple modifications of the current solution.
- These modifications must be designed based on the properties of the problem.

Shuffled neighborhood structure

- Obtained from shuffling the solutions from another neighborhood.
- The shuffling can be deterministic or random.

Feasible neighborhood structure

- Useful when a potential neighborhood structure contains infeasible solutions.
- Feasibility checks can also be done while generating the neighbors.

Neighborhood types

Truncated neighborhood structure

- Useful when a potential neighborhood structure is too large.
- The size of the neighborhood is controlled.

Combined neighborhood structure

- Union, intersection, or any combination of other structures.
- Use building blocks to construct more complex structures.

Neighborhoods

Important properties

- Neighborhood structures are used to explore the solution space.
- Algorithms will move from x to an element of $V(x)$.
- They can be seen as "vehicles".
- Symmetry: it is good practice to use symmetric neighborhoods:

$$
y \in V(x) \Longleftrightarrow x \in V(y)
$$

- Reachability: a neighborhood V must be rich enough to reach any feasible solution, from another feasible solution. For each $x_{1}, x_{K} \in \mathcal{U}$, there exists a sequence $x_{2}, \ldots, x_{K-1} \in \mathcal{U}$ such that

$$
x_{k+1} \in V\left(x_{k}\right), k=1, \ldots, K-1
$$

- Analogy with Markov chains: irreducibility.

Integer optimization

Integer optimization

- Consider the current iterate $x \in \mathbb{Z}^{n}$.
- For each $k=1, \ldots, n$, define 2 neighbors by increasing and decreasing the value of x_{k} by one unit.
- The neighbors y^{k+} and y^{k-} are defined as

$$
y_{i}^{k+}=y_{i}^{k-}=x_{i}, \forall i \neq k, \quad y_{k}^{k+}=x_{k}+1, \quad y_{k}^{k-}=x_{k}-1
$$

- Example

$$
x=(3,5,2,8) \quad y^{2+}=(3,6,2,8) \quad y^{2-}=(3,4,2,8)
$$

- Size of the neighborhood: $2 n$.
- Feasibility should also be enforced.
- If n is large, truncation may be useful.
- The order is arbitrary, but must be specified.
- Shuffling may be useful.

Integer optimization

Creativity

- The concept of neighborhood is fairly general.
- It must be defined based on the structure of the problem.
- Creativity is required here.

Integer optimization

Combinations

- Combining neighborhoods is easy.
- Trade-off between flexibility and complexity.

Integer optimization

Properties

- Verify the properties.
- Symmetry and reachability.

The knapsack problem

Fundamental neighborhood

- Current solution: for each item $i, x_{i}=0$ or $x_{i}=1$.
- Neighbor solution: select an item j, and change the decision: $x_{j} \leftarrow 1-x_{j}$.
- Warning: check feasibility.
- Generalization: neighborhood of size k : select k items, and change the decision for them (checking feasibility).
- Order: based on the utility/weight ratio, for instance.

The knapsack problem

Truncated neighborhood

- A neighborhood of size k modifies k variables.
- Number of neighbors:

$$
\frac{n!}{k!(n-k)!}
$$

- $k=1$: n neighbors.
- $k=n$: 1 neighbor.
- Useful to truncate to M.
- Size of the neighborhood:

$$
\min \left(\frac{n!}{k!(n-k)!}, M\right)
$$

Python code

```
def neighborhood(sack, size = 1, random = True, truncated = None):
    n = len(sack)
    combinations = np.array(list(itertools.combinations(range(n), size)))
    if random:
        np.random.shuffle(combinations)
    if truncated is not None:
        combinations = combinations[:truncated]
    theNeighborhood = []
    for c in combinations:
        s = np.array(sack)
        s[c] = 1 - sack[c]
        theNeighborhood.append(s)
    return theNeighborhood
```


Traveling salesman problem

2-OPT

- Select two cities.
- Swap their position in the tour.
- Visit all intermediate cities in reverse order.

Example
Current tour:

$$
\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{D}-\mathrm{E}-\mathrm{F}-\mathrm{G}-\mathrm{H}-\mathrm{A}
$$

Exchange C and G to obtain
A-B-G-F-E-D-C-H-A.

Traveling salesman problem

Example: 2-OPT $(1,9)$

- Try to improve the solution using 2-OPT swapping 1 and 9 .
- Before: $\mathrm{H}-8-7-11-6-5-1-2-3-4-10-9-\mathrm{H}$ (length: 165.6)
- After: H-8-7-11-6-5-9-10-4-3-2-1-H (length: 173.3)
- No improvement.

Neighborhood: 2-OPT(1,9)

Neighborhood: 2-OPT(1,9)

Exploration

Comments

- Design of "vehicles" to explore the solution space.
- Fundamental neighborhoods exploit the structure of the problem.
- Various operations allow to modify and combine neighborhoods.
- Trade-off between flexibility and complexity.
- The neighborhood must be sufficiently large to increase the chances of improvement, and sufficiently small to avoid a lengthy enumeration.
- Example of a neighborhood too small: one neighbor at the west.
- Example of a neighborhood too large: each feasible point is in the neighborhood.

Outline

(1) Motivation
(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4 Summary

Local search: version one

- Consider the combinatorial optimization problem

$$
\min f(x)
$$

subject to

$$
x \in \mathcal{U}
$$

- Consider the neighborhood structure $V(x)$, where $V(x)$ is the set of feasible neighbors of x.
- At each iteration k, consider the neighbors in $V\left(x_{k}\right)$ one at a time.
- For each $y \in V\left(x_{k}\right)$, if $f(y)<f\left(x_{k}\right)$, then $x_{k+1}=y$ and proceed to the next iteration.
- If $f(y) \geq f\left(x_{k}\right), \forall y \in V\left(x_{k}\right), x_{k}$ is a local minimum. Stop.

Local search: version two

- Consider the combinatorial optimization problem

$$
\min f(x)
$$

subject to

$$
x \in \mathcal{U}
$$

- Consider the neighborhood structure $V(x)$, where $V(x)$ is the set of neighbors of x.
- At each iteration k, find y such that

$$
f(y) \leq f\left(x_{k}\right), \forall y \in V\left(x_{k}\right)
$$

- If $f(y)=f\left(x_{k}\right), x_{k}$ is a local minimum. Stop.
- Otherwise, proceed to the next iteration.

Local search: example

$$
\min _{x \in \mathbb{R}^{2}}-3 x_{1}-13 x_{2}
$$

subject to

$$
\begin{aligned}
2 x_{1}+9 x_{2} & \leq 40 \\
11 x_{1}-8 x_{2} & \leq 82 \\
x_{1}, x_{2} & \in \mathbb{N}
\end{aligned}
$$

Local search: example

Local search: example

$$
x_{0}=(6,0)-\text { Neighborhood: E-N - W - S }
$$

Local search: example

$$
x_{0}=(0,3)-\text { Neighborhood: E-N - W - S }
$$

Local search: example

$$
x_{0}=(6,0)-\text { Neighborhood : N }-\mathrm{W}-\mathrm{S}-\mathrm{E}
$$

The knapsack problem

$$
\max _{x \in\{0,1\}^{n}} u^{T} x
$$

subject to

$$
w^{\top} x \leq W
$$

The knapsack problem

```
def localSearch(u, w, capacity, initSolution, neighborhood):
    x = initSolution
    ux = np.inner(u, x)
    wx = np.inner(w, x)
    if wx > capacity:
    Exception(f'Infeasible weight {wx} > {capacity}')
    localOptimum = False
    while not localOptimum:
    neighbors = neighborhood(x)
    localOptimum = True
    for y in neighbors:
        wy = np.inner(w, y)
        if wy <= capacity:
        uy = np.inner(u, y)
        if uy > ux:
            localOptimum = False
            x = y
            ux = uy
            wx = wy
```


The knapsack problem

```
def neighborhood1(sack):
    return neighborhood(sack, size = 1, random = False, truncated = None)
firstSack = np.array([0]*n)
localSearch(utility, weight, capacity, firstSack, neighborhood1)
First sack: [0 0 0 0 0 0 0 0 0 0 0 0] U=0 W=0
New sack : [1 0 0 0 0 0 0 0 0 0 0 0] U=80 W=84
New sack : [0 0 0 0 0 1 0 0 0 0 0 0] U=84 W=96
New sack : [1 0 0 0 0 1 0 0 0 0 0 0] U=164 W=180
New sack : [1 1 1 0 0 0 1 0 0 0 0 0 0] U=195 W=207
New sack : [1 [1 0 1 0 0 1 0 0 0 0 0 0] U=212 W=227
New sack : [1 0 0 0 0 1 0 0 0 1 0 0] U=222 W=233
New sack : [1 [1 0 0 0 0 1 0 0 0 0 0 1] U=231 W=258
New sack : [1 1 1 0 0 0 1 0 0 0 0 0 1] U=262 W=285
New sack : [1 0 0 0 0 1 1 0 0 0 0 1] U=265 W=300
```


The knapsack problem

```
def neighborhood2(sack):
    return neighborhood(sack, size = 3, random = False, truncated = None)
firstSack = np.array([0]*n)
localSearch(utility, weight, capacity, firstSack, neighborhood2)
First sack: [0 0 0 0 0 0 0 0 0 0 0 0] U=0 W=0
New sack : [1 1 1 1 0 0 0 0 0 0 0 0 0] U=159 W=158
New sack : [1 1 1 0 0 0 1 0 0 0 0 0 0] U=195 W=207
New sack : [1 [1 0 1 0 0 1 0 0 0 0 0 0] U=212 W=227
New sack : [1 [10 0 0 0 1 0 0 0 1 0 0] U=222 W=233
New sack : [1 0 0 0 0 1 0 0 0 0 0 1] U=231 W=258
New sack : [0 [ 1 0 0 0 1 0 0 0 1 0 1] U=240 W=254
New sack : [0 0 0 1 0 0 1 0 0 1 0 0 1] U=245 W=275
New sack : [0 0 0 1 0 0 1 0 0 0 1 0 1] U=257 W=274
New sack : [1 0 1 0 0 1 0 0 1 0 0 0] U=258 W=281
New sack : [1 [1 0 1 0 0 1 0 0 0 1 0 0}] U=270 W=28
New sack : [0 0 1 1 0 1 0 0 0 1 0 1] U=274 W=296
New sack : [0 0 1 0 1 1 0 0 0 1 0 1] U=284 W=295
New sack : [1 0 0 0 1 1 0 1 0 1 0 0] U=288 W=300
```


Traveling salesman problem

Procedure

- Start with the outcome of the greedy algorithm.
- Use the 2-OPT neighborhood.
- Use version two of the local search.

Current tour

Best neighbor: 2-OPT $(8,4)$

Length: 155.8

Best neighbor: 2-OPT $(8,9)$

Best neighbor: 2-OPT $(11,7)$

Best neighbor: 2-OPT $(7,10)$

Best neighbor: 2-OPT $(10,9)$

Comments

- The algorithm stops at a local minimum, that is a solution better than all its neighbors.
- The outcome depends on the starting point and the structure of the neighborhood.
- Several variants are possible.

Outline

(1) Motivation
(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4 Summary

Changing the starting point

Idea

- Launch the local search from several starting points.
- Select the best local optimum.

Issues

- Feasibility.
- Same local optimum may be generated many times.
- Shooting in the dark.

Variable Neighborhood Search

- aka VNS
- Idea: consider several neighborhood structures.
- When a local optimum has been found for a given neighborhood structure, continue with another structure.

VNS: method

Input $\bullet V_{1}, V_{2}, \ldots, V_{K}$ neighborhood structures.

- Initial solution x_{0}.

Initialization

- $x_{c} \leftarrow x_{0}$
- $k \leftarrow 1$

Iterations Repeat

- Apply local search from x_{c} using neighborhood V_{k}

$$
x^{+} \leftarrow L S\left(x_{c}, V_{k}\right)
$$

- If $f\left(x^{+}\right)<f\left(x_{c}\right)$, then $x_{c} \leftarrow x^{+}, k \leftarrow 1$.
- Otherwise, $k \leftarrow k+1$.

Until $k=K$.

VNS: example for the knapsack problem

- Neighborhood of size k : modify k variables.
- Local search: current iterate: x_{c}
- randomly select a neighbor x^{+}
- if $w^{\top} x^{+} \leq W$ and $u^{T} x^{+}>u^{T} x_{c}$, then $x_{c} \leftarrow x^{+}$

VNS: example for the knapsack problem

Simulated annealing

Analogy with metallurgy

- Heating a metal and then cooling it down slowly improves its properties.
- The atoms take a more solid configuration.

In optimization:

- Local search can both decrease and increase the objective function.
- At "high temperature", it is common to increase.
- At "low temperature", increasing happens rarely.
- Simulated annealing: slow cooling $=$ slow reduction of the probability to increase.

Simulated annealing

Modify the local search.
For the sake of simplicity: consider a neighborhood structure containing only feasible solutions.
Let x_{k} be the current iterate

- Select $y \in V\left(x_{k}\right)$.
- If $f(y) \leq f\left(x_{k}\right)$, then $x_{k+1}=y$.
- Otherwise, $x_{k+1}=y$ with probability

$$
e^{-\frac{f(y)-f\left(x_{k}\right)}{T}}
$$

$$
\text { with } T>0
$$

Concretely, draw r between 0 and 1. Accept y as next iterate if

$$
e^{-\frac{f(y)-f\left(x_{k}\right)}{T}}>r
$$

Simulated annealing

$$
\operatorname{Prob}\left(x_{k+1}=y\right)= \begin{cases}1 & \text { if } f(y) \leq f\left(x_{k}\right) \\ e^{-\frac{f(y)-f\left(x_{k}\right)}{T}} & \text { if } f(y)>f\left(x_{k}\right)\end{cases}
$$

- If T is high (hot temperature), high probability to increase.
- If T is low, almost only decreases.

Simulated annealing

Example: $f\left(x_{k}\right)=3$

Simulated annealing

- In practice, start with high T for flexibility.
- Then, decrease T progressively.

Simulated annealing

Input - Initial solution x_{0}

- Initial temperature T_{0}, minimum temperature T_{f}
- Neighborhood structure $V(x)$
- Maximum number of iterations K

Initialize $x_{c} \leftarrow x_{0}, x^{*} \leftarrow x_{0}, T \leftarrow T_{0}$

Simulated annealing

Repeat $k \leftarrow 1$

- While $k<K$
- Randomly select a neighbor $y \in V\left(x_{c}\right)$
- $\delta \leftarrow f(y)-f\left(x_{c}\right)$
- If $\delta<0, x_{c}=y$.
- Otherwise, draw r between 0 and 1
- If $r<\exp (-\delta / T)$, then $x_{c}=y$
- If $f\left(x_{c}\right)<f\left(x^{*}\right), x^{*}=x_{c}$.
- $k \leftarrow k+1$
- Reduce T

Until $\quad T \leq T_{f}$

Example: traveling salesman problem

Best solution found

Practical comments

- Parameters must be tuned.
- In particular, the reduction rate of the temperature must be specified.
- Let δ_{t} be a typical increase of the objective function.
- In the beginning, we want such an increase to be accepted with probability p_{0} (e.g. $p_{0}=0.999$)
- At the end, we want such an increase to be accepted with probability p_{f} (e.g. $p_{f}=0.00001$)
- We allow for M updates of the temperature. So, for $m=0, \ldots, M$,

$$
T=-\frac{\delta_{t}}{\ln \left(p_{0}+\frac{p_{f}-p_{0}}{M} m\right)}
$$

Comments

How to avoid being blocked in local minimum?

- Apply an algorithm from multiple starting points.
- How to find feasible starting point?
- How to avoid shooting in the dark?
- Change the structure of the neighborhood: variable neighborhood search
- How to choose the neighborhood structures?
- Allow the algorithm to proceed upwards: simulated annealing
- Climb the mountain to find another valley.
- How to decide when it is time to climb or to go down?

Outline

(1) Motivation

(2) Classical problems
(3) Algorithms

- Brute force
- Greedy heuristics
- Exploration
- Intensification
- Diversification

4 Summary

Combinatorial optimization

Chacteristics

- f and \mathcal{U} have no specific property.
- f is a black box.
- \mathcal{U} is a finite set of valid configurations.
- No optimality condition is available.

Optimization methods

Exact methods (branch and bound)

- Finds the optimal solution.
- Suffers from the curse of dimensionality.
- Requires the availability of valid and tight bounds.

Approximation algorithms

- Finds a sub-optimal solution.
- Guarantees a bound on the quality of the solution.
- Mainly used for theoretical purposes.

Heuristics

- Smart exploration of the solution space.
- No guarantee about optimality.
- Few assumptions about the problem.

Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification
Escape from local minima

Meta-heuristics

- Methods designed to escape from local optima are sometimes called "meta-heuristics".
- Plenty of variants are available in the literature.
- In general, success depends on exploiting well the properties of the problem at hand.
- VNS is one of the simplest to code.
- Additional bio-inspired methods have also been proposed and applied: genetic algorithms, ant colony optimization, etc.

