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Outline

@ Motivation
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Optimization

Procedure
@ Mathematical modeling.
@ Selection of an algorithm.

@ Solving the problem.
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Optimization

Mathematical modeling
@ Decision variables x.
@ Objective function f.
@ Constraints X.

Optimization problem
min f(x
xeR" ( )

subject to
x € X CR".
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Optimization

Selection of an algorithm
@ Mathematical properties of the model.
@ Linear optimization.
@ Convex optimization.
@ Mixed integer linear optimization.
°

Differentiable optimization.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation

5/126



Optimization

Solving the problem
@ Implement, or obtain the code of the algorithm.
@ Import the data.

@ Solve.
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Motivation

General framework

Z=hX,Y,U)+e,
Cu . Gy

| External input — y|

Ex - .>@x system — @

[Indicators — zfe oo €z
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General framework

Assumptions
@ Control U is deterministic.

Z(u)=h(X,Y,u)+e,
@ Various features of Z are considered: mean, variance, quantile, etc.

(z1(u), ..., zm(u))

@ They are combined in a single indicator:

f(u) =g(z1(v),...,zm(u))
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General framework: example

Rico at Satellite
@ X: number of customers in the bar
Y': arrivals of customers
u: service time of Rico
Z(u): waiting time of the customers

°

°

°

@ z1(u): mean waiting time

@ z(u): maximum waiting time
°

f(u) = g(z1(v), 2(u)) = 21 + 2
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Motivation

General framework: the black box

L

External input — y|
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Optimization problem

o2 fe)

subject to
uelU CR"

@ u: decision variables
o f(u): objective function
@ u € U: constraints

@ U: feasible set
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Optimization problem

Combinatorial optimization
@ f and U have no specific property.
o f is a black box.

@ U is a finite set of valid configurations.

@ No optimality condition is available.
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Optimization methods

Exact methods (branch and bound)
@ Finds the optimal solution.
@ Suffers from the curse of dimensionality.

@ Requires the availability of valid and tight bounds.

Approximation algorithms
@ Finds a sub-optimal solution.
@ Guarantees a bound on the quality of the solution.

@ Mainly used for theoretical purposes.

Heuristics
@ Smart exploration of the solution space.

@ No guarantee about optimality.

@ Few assumptions about the problem.
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Outline

© Classical problems
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The knapsack problem

@ Patricia prepares a hike in the
mountain.

@ She has a knapsack with capacity Wkg.

@ She considers carrying a list of n items.

@ Each item has a utility u; and a weight
w;.

@ What items should she take to

maximize the total utility, while fitting
in the knapsack?
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Mathematical model

Decision variables

. 1 if item / goes into the knapsack,
"7 1 0 otherwise

Objective function

Constraints

n
Z Wi X; < W
i=1

x;€{0,1} i=1,...,n

V.
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Classical problems

Instance

n=12
Maximum weight: 300.

ltem Utility Weight

1 80
2 31
3 48
4 17
5 27
6 84
7 34
8 39
9 46
10 58
11 23
12 67
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Classical problems

Real example

Portfolio optimization
@ Items: potential assets.
o Utility: return.
@ Weight: risk.

@ Capacity: maximum risk.

v
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Classical problems

Traveling salesman problem

The problem
o Consider n cities.
@ For any pair (i, j) of cities, the distance dj; between them is known.

@ Find the shortest possible itinerary that starts from the home town of
the salesman, visit all other cities, and come back to the origin.
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TSP: example

Lausanne, Geneva, Zurich, Bern

228
2 (D

Home town: Lausanne

3 possibilities (+ their symmetric version):
oL —+B—=72Z—=G— L 572km
oL—+-B—=-G—=7Z— L: 769 km
oL—+7Z—+B—G— L:575km
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TSP: 12 cities (euclidean dist.)

®
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Classical problems

Integer linear optimization problem

. o Integer Linear optimization
Linear optimization

T min ¢ x
mﬁg c'x x€Rn
xeR"
) subject to
subject to
Ax=b Ax=0>b
x = 0. x € N.
where A € R™*" b € R™ and
ceR" where A€ R™" b e R™ and

<« c € R". )
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Classical problems

Feasible set

Intersection polyhedron /integer

Polyhedron lattice
3 . 3 - . . . . )
2 4
1 +4
0 1 1 1 1 \
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Classical problems

Example
min —3x; — 13x
xER2
subject to
2x1+9x% < 40
11x — 8x, < 82
x1,x2 > 0
x1,x2 €N
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Classical problems

Example
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Outline

© Algorithms

@ Brute force
Greedy heuristics
Exploration
Intensification
Diversification
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Brute force
Outline

@ Motivation
© Classical problems

© Algorithms
@ Brute force

@ Summary
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Algorithms Brute force

Brute force algorithm

in f
i, Fw)

subject to
ueld CR"

Brute force algorithm
o f*=+o0
@ For each x e U, if f(x) < f* then x* = x, f* = f(x*).
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Algorithms Brute force

Knapsack problem

Enumeration
@ Each object can be in or out, for a total of 2” combinations.
@ For each of them, we must:

o Check that the weight is feasible.
o If so, calculate the utility and check if it is better than *.
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Algorithms Brute force

Python implementation

import numpy as np
import itertools
utility = np.array([80, 31, 48, 17, 27, 84, 34, 39, 46, 58, 23, 67])
weight = np.array([84, 27, 47, 22, 21, 96, 42, 46, 54, 53, 32, 78])
capacity = 300
n = len(utility)
fstar = -np.inf
xstar = None
for ¢ in itertools.product([0, 1], repeat = n):
w = np.inner(c, weight)
if w <= capacity:
u = np.inner(c, utility)
if u > fstar:
xstar = ¢
fstar = u

Solution: (1,1,1,1,1,0,0,1,0, 1, 0, 0). Weight: 300. Utility: 300
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Algorithms Brute force

Knapsack problem

Computational time
@ About 2n floating point operations per combination.

@ Assume a 1 Teraflops processor: 102 floating point operations per
second.
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Algorithms Brute force

Knapsack problem

Computational time

@ If n =34, about 1 second to solve.

o If n =40, about 1 minute.

o If n =45, about 1 hour.

o If n =50, about 1 day.

@ If n =58, about 1 year.

@ If n =69, about 2583 years, more than the Christian Era.
°

If n =78, about 1,500,000 years, time elapsed since Homo Erectus
appeared on earth.

o If n =091, about 100 years, roughly the age of the universe.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 32/126



Algorithms Brute force

Traveling salesman problem

Python code
fstar = np.inf
xstar = None
for t in itertools.permutations(names[1:]):
tour = [’0’]+1list(t)
tl = tsp.tourLength(tour)
if tl < fstar:
xstar = tour
fstar = tl )

TSP with 12 cities
@ 11! = 39916800 permutations.
@ Running time: about 5 minutes.
@ Solution: H-4-3-2-6-1-5-9-10-11-7-8
@ Tour length: 128.762

v
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Algorithms Brute force

Optimal solution

Length : 128.762
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Algorithms Brute force

Integer optimization

min —3x; — 13x

xER2
subject to
2x1+9x% < 40
11x; — 8x, < 82
X1, X2 Z 0
x1,x2 €N
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Algorithms Brute force

Feasible set: 36 solutions

4 — L]

3 A .

2 — L]
Optimal solution (integer)

1 - L] L] L] L] L] . L] L] L]
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Algorithms Brute force

Brute force algorithm

Comments
Very simple to implement.

Works only for small instances.

°
°

@ Curse of dimensionality.

@ Running time increases exponentially with the size of the problem.
°

Not a reasonable option.
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Greedy heuristics
Outline

@ Motivation
© Classical problems
© Algorithms

@ Greedy heuristics

@ Summary

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 38/126



Algorithms Greedy heuristics

Greedy heuristics

Principles
@ Step by step construction of a feasible solution.
@ At each step, a local optimization is performed.

@ Decisions taken at previous steps are definitive.

Properties
@ Easy to implement.
@ Short computational time.
@ May generate poor solutions.

@ Used to generate initial solutions.
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sty (3T
The knapsack problem

Greedy heuristic
@ Sort the items by decreasing order of u;/w;.

@ For each item in this order, put it in the sack if it fits.
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Algorithms Greedy heuristics

The knapsack problem

ltem Utility Weight Ratio
1 80 84 0.952
2 31 27 1.148
3 48 47 1.021
4 17 22 0.773
5 27 21 1.286
6 84 96 0.875
7 34 42 0.810
8 39 46 0.848
9 46 54 0.852
10 58 53 1.094
11 23 32 0.719
12 67 78 0.859
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sty (3T
The knapsack problem

ltem Utility Weight

Ratio

Order Remaining capacity

1 80
2 31
3 48
4 17
5 27
6 84
7 34
8 39
9 46
10 58
11 23
12 67

Utility: 244 (Opt: 300). Weight: 232.

84
27
47
22
21
96
42
46
54
53
32
78

0.952
1.148
1.021
0.773
1.286
0.875
0.810
0.848
0.852
1.094
0.719
0.859

5 68
2 252
4 152
1 279
6 -28
3 199

Optimization and Simulation
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Algorithms Greedy heuristics

The traveling salesman problem

Greedy heuristic
@ Start from home.

@ At each step, select the closest city as the next one.
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Greedy heuristics
TSP: 12 cities

®
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Greedy heuristics
TSP: 12 cities

®
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Greedy heuristics
TSP: 12 cities

®
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Greedy heuristics
TSP: 12 cities

®
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Greedy heuristics
TSP: 12 cities

®
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Greedy heuristics
TSP: 12 cities

®
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Greedy heuristics
TSP: 12 cities
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Greedy heuristics
TSP: 12 cities
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Greedy heuristics
TSP: 12 cities

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 52 /126



Greedy heuristics
TSP: 12 cities
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Greedy heuristics
TSP: 12 cities
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Greedy heuristics
TSP: 12 cities

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 55 /126



Greedy heuristics
TSP: 12 cities

Length: 165.6 [Optimal: 128.762]
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Algorithms Greedy heuristics

Integer optimization

Intuitive approach
@ Solve the continuous relaxation.

@ Round the solution.
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Algorithms Greedy heuristics

Example
min —3x; — 13x
xER2
subject to
2x1+9x% < 40
11x; — 8x, < 82
x1,x2 > 0
x1,x2 €N
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Algorithms Greedy heuristics

Relaxation: feasible set
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Algorithms Greedy heuristics

Optimal solution of the relaxation

Opt. solution relaxation (9.2,2.4)
0 % % % % % % % % % %

0 1 2 3 4 5 6 7 8 9 10

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 60 /126



Algorithms Greedy heuristics

Integrality constraints

1 - L] L] L] L] L] . L] L] L]
Opt. solution relaxation (9.2,2.4)

0 t t t t— t t+—— t t

0 1 2 3 4 5 6 7 9 10
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Algorithms Greedy heuristics

Infeasible neighbors

5AF . [ . . ° . . o . .

Infeasible neighbors

1 - L] L] L] L] L] . L] L] L]
Opt. solution relaxation (9.2,2.4)

0 t t t t— t t+—— t t

0 1 2 3 4 5 6 7 9 10
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Algorithms Greedy heuristics

Solution of the integer optimization problem

5AF . . . . ° . . o . .

Infeasible neighbors

Optimal solution (integer)

1 - L] L] L] L] L] . L] L]
Opt. solution relaxation (9.2,2.4)

0 t t t t— t t+—— t t

0 1 2 3 4 5 6 7 9 10
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Algorithms Greedy heuristics

Issues

@ There are 2" different ways to round. Which one to choose?
@ Rounding may generate an infeasible solution.

@ The rounded solution may be far from the optimal solution.
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Algorithms Greedy heuristics

Greedy heuristics

Comments
Fast.
Easy to implement.

Useful to find an initial solution.

]
]
]
]

Feasibility is usually the main issue (rounding issues with ILP).
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Exploration
Outline

@ Motivation
© Classical problems

© Algorithms

@ Exploration

@ Summary
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Algorithms Exploration

Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification

Escape from local minima
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el
Neighborhood

Concept
@ The feasible set is too large.
@ We need to explore it in a smart way.

@ ldea: at each iteration, restrict the optimization problem to a small
feasible subset that can be enumerated.

@ The small subset is called a neighborhood.
@ It is a sorted list of solutions.
@ Ideally, all these solutions must be feasible.

@ Neighborhoods can be constructed incrementally during the
algorithms.
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el
Neighborhood types

Fundamental neighborhood structure
@ Obtained from simple modifications of the current solution.

@ These modifications must be designed based on the properties of the
problem.

Shuffled neighborhood structure
@ Obtained from shuffling the solutions from another neighborhood.

@ The shuffling can be deterministic or random.

Feasible neighborhood structure

@ Useful when a potential neighborhood structure contains infeasible
solutions.

@ Feasibility checks can also be done while generating the neighbors.

v
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el
Neighborhood types

Truncated neighborhood structure
@ Useful when a potential neighborhood structure is too large.

@ The size of the neighborhood is controlled.

Combined neighborhood structure

@ Union, intersection, or any combination of other structures.

@ Use building blocks to construct more complex structures.
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el
Neighborhoods

Important properties

(4

Neighborhood structures are used to explore the solution space.
@ Algorithms will move from x to an element of V/(x).

@ They can be seen as “vehicles”.

@ Symmetry: it is good practice to use symmetric neighborhoods:

y € V(x) <= x € V(y).

(4

Reachability: a neighborhood V' must be rich enough to reach any
feasible solution, from another feasible solution. For each xi,xx € U,
there exists a sequence xp,...,Xxkx_1 € U such that

Xk+1 € V(Xk), k=1,...,K—-1.

@ Analogy with Markov chains: irreducibility.

v
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Algorithms Exploration

Integer optimization
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Algorithms Exploration

Integer optimization

@ Consider the current iterate x € Z".

@ For each k =1,...,n, define 2 neighbors by increasing and

e ¢ 6 ¢

)

decreasing the value of x, by one unit.
The neighbors y** and y¥~ are defined as

y,'k+:y,'k_:Xi7Vi7éka y[f+:Xk+]-a y[i(_:Xk_]"
Example
x=(3,52,8) y*'=(3,6,2,8) y* =(3,4,2,8)
Size of the neighborhood: 2n.
Feasibility should also be enforced.
If nis large, truncation may be useful.
The order is arbitrary, but must be specified.

Shuffling may be useful.
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Algorithms Exploration

Integer optimization

Creativity
@ The concept of neighborhood is fairly general.
@ It must be defined based on the structure of the problem.

@ Creativity is required here.
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Algorithms Exploration

Integer optimization

Combinations
@ Combining neighborhoods is easy.

@ Trade-off between flexibility and complexity.
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Algorithms Exploration

Integer optimization

Properties
@ Verify the properties.
@ Symmetry and reachability.
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=
The knapsack problem

Fundamental neighborhood
@ Current solution: for each item i, x; =0 or x; = 1.
@ Neighbor solution: select an item j, and change the decision:
xj < 1 —x;.
@ Warning: check feasibility.

@ Generalization: neighborhood of size k: select k items, and change
the decision for them (checking feasibility).

@ Order: based on the utility/weight ratio, for instance.
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=
The knapsack problem

Truncated neighborhood
@ A neighborhood of size k modifies k variables.

©

Number of neighbors:
n!

Ki(n— k)!
k = 1: n neighbors.
k = n: 1 neighbor.
Useful to truncate to M.
Size of the neighborhood:

n!

min(m,M).
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el
Python code

def neighborhood(sack, size = 1, random = True, truncated = None):
n = len(sack)
combinations = np.array(list(itertools.combinations(range(n), size)))
if random:
np.random. shuffle(combinations)
if truncated is not Nome:
combinations = combinations[:truncated]
theNeighborhood = []
for ¢ in combinations:
s = np.array(sack)
slc]l = 1 - sacklc]
theNeighborhood.append(s)
return theNeighborhood
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el
Traveling salesman problem

2-OPT
@ Select two cities.
@ Swap their position in the tour.

@ Visit all intermediate cities in reverse order.

Example

Current tour:
A-B-C-D-E-F-G-H-A

Exchange C and G to obtain

A-B-G—F-E-D—-C-H-A.
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Algorithms Exploration

Traveling salesman problem

Example: 2-OPT(1,9)
@ Try to improve the solution using 2-OPT swapping 1 and 9.
o Before: H-8-7-11-6-5-1-2-3-4-10-9-H (length: 165.6)
o After : H-8-7-11-6-5-9-10-4-3-2-1-H (length: 173.3)

@ No improvement.
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Exploraion
Neighborhood: 2-OPT(1,9)

Length: 165.6
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Exploraion
Neighborhood: 2-OPT(1,9)

Length: 173.3
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Algorithms Exploration

Exploration
Comments
@ Design of “vehicles” to explore the solution space.
@ Fundamental neighborhoods exploit the structure of the problem.
@ Various operations allow to modify and combine neighborhoods.
@ Trade-off between flexibility and complexity.
@ The neighborhood must be sufficiently large to increase the chances of

improvement, and sufficiently small to avoid a lengthy enumeration.
@ Example of a neighborhood too small: one neighbor at the west.

@ Example of a neighborhood too large: each feasible point is in the
neighborhood.
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Intensification
Outline

@ Motivation
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© Algorithms

@ Intensification

@ Summary

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 85/126



Algorithms Intensification

Local search: version one

(]

Consider the combinatorial optimization problem
min f(x)

subject to
xeU.

©

Consider the neighborhood structure V/(x), where V/(x) is the set of
feasible neighbors of x.

(]

At each iteration k, consider the neighbors in V/(xx) one at a time.

(4

For each y € V(xk), if f(y) < f(x«), then xx+1 = y and proceed to
the next iteration.

If f(y) > f(xk), Vy € V(xx), xx is a local minimum. Stop.
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Algorithms Intensification

Local search: version two

(]

Consider the combinatorial optimization problem
min f(x)

subject to
x€eU.

Consider the neighborhood structure V(x), where V(x) is the set of
neighbors of x.

At each iteration k, find y such that

(]

f(y) < f(xk), Yy € V(xk).

(4

If f(y) = f(xk), xk is a local minimum. Stop.

©

Otherwise, proceed to the next iteration.
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Algorithms Intensification

Local search: example

min *3X1 — 13X2

x€ER2
subject to
2x1 +9x% < 40
11X1 — 8X2 S 82
x1,x2 € N
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Algorithms Intensification

Local search: example
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Algorithms Intensification

Local search: example

xo = (6,0) - Neighborhood: E- N -W -S
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Algorithms Intensification

Local search: example

xo = (0,3) - Neighborhood: E- N -W-S
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Algorithms Intensification

Local search: example

xo = (6,0) - Neighborhood : N-W -S - E

0 1 2 3 4 5 6 7 8 9 10
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[T e
The knapsack problem

max UTX
xe€{0,1}"

subject to
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[T e
The knapsack problem

def localSearch(u, w, capacity, initSolution, neighborhood) :
x = initSolution
ux = np.inner(u, x)
wx = np.inner(w, x)
if wx > capacity:
Exception(f’Infeasible weight {wx} > {capacityl}’)
localOptimum = False
while not localOptimum:
neighbors = neighborhood(x)
localOptimum = True
for y in neighbors:
wy = np.inner(w, y)
if wy <= capacity:
uy = np.inner(u, y)
if uy > ux:
localOptimum = False

X =y
ux = uy
WX = Wy
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[T e
The knapsack problem

def neighborhoodl(sack):

localSearch(utility,
First sack: [0 0 O
New sack [100
New sack [000O
New sack [100
New sack [110
New sack [101
New sack [100
New sack [100
New sack [110
New sack [100

O O O OO O OO oo

weight,

O O O OO O OO oo

0

N e e =)
H O O O OO O OO O
O O O O O O O O O o
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0

capacity, firstSack, neighborhoodl)
U=0 W=

0

O O O OO O OO oo
OO O, OO O OO
O O O OO OO oo

0

return neighborhood(sack, size =
firstSack = np.array([0]*n)

0]
0]
0]
0]
0]
0]
0]
1]
1]
1]

1, random =

0

U=80 W=84
U=84 W=96

U=164
U=195
U=212
U=222
U=231
U=262
U=265

W=180
W=207
W=227
W=233
W=258
W=285
W=300
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[T e
The knapsack problem

def neighborhood2(sack):
return neighborhood(sack, size = 3, random = False, truncated = None)

firstSack = np.array([0]*n)

localSearch(utility, weight,

First sack:

New
New
New
New
New
New
New
New
New
New
New
New
New

sack
sack
sack
sack
sack
sack
sack
sack
sack
sack
sack
sack
sack

[0
[1
[1
[1
[1
[1
[0
[o
[0
[1
[1
[0
[0
[1

0

O O OO OO Kr OO O - -

o
o
o

0

R E R R PRPROO0OOR O
O OO O OO0 OO OO o

0

0

B P2, OO O0OO0OO0OO0OO0OO0OOOoOOo
N T e T e e e T e e S o)
O O OO OO O OO OO oo

0

M. Bierlaire (TRANSP-OR ENAC EPFL)

0

P O O O O0OO0OO0OO0OO0OO0OOOoOOoOOo
O O OO, OKFHr OOOOOOoOOo
R B, R RO, OR,OFROOO

o

capacity, firstSack, neighborhood2)
U=0 W=

0

0

O OO OO O0OO0OO0O OO OO0

0]
0]
0]
0]
0]
1]
1]
1]
1]
0]
0]
1]
1]
0]

U=159
U=195
U=212
U=222
U=231
U=240
U=245
U=257
U=258
U=270
U=274
U=284
U=288

0

W=158
W=207
w=227
W=233
W=258
W=254
W=275
W=274
W=281
W=280
W=296
W=295
W=300
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Algorithms Intensification

Traveling salesman problem

Procedure
@ Start with the outcome of the greedy algorithm.
@ Use the 2-OPT neighborhood.
@ Use version two of the local search.
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Algorithms Intensification

Current tour

Length: 165.6
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Intensfcation
Best neighbor: 2-OPT(8,4)

Length: 155.8
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Intensfcation
Best neighbor: 2-OPT(8,9)

Length: 143.0
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Intensfcation
Best neighbor: 2-OPT(11,7)

Length: 139.5
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Intensfcation
Best neighbor: 2-OPT(7,10)

Length: 137.5
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Intensfcation
Best neighbor: 2-OPT(10,9)

©

13.8
— B Dy es (D
©

Length: 130.7 [Opt: 128.762]
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Algorithms Intensification

Comments

@ The algorithm stops at a local minimum, that is a solution better
than all its neighbors.

@ The outcome depends on the starting point and the structure of the
neighborhood.

@ Several variants are possible.
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Diversification
Outline

@ Motivation
© Classical problems

© Algorithms

@ Diversification

@ Summary

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 105 /126



PGt
Changing the starting point

Idea
@ Launch the local search from several starting points.

@ Select the best local optimum.

Issues
@ Feasibility.

@ Same local optimum may be generated many times.

@ Shooting in the dark.
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PGt
Variable Neighborhood Search

@ aka VNS
@ Idea: consider several neighborhood structures.

@ When a local optimum has been found for a given neighborhood
structure, continue with another structure.
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Diversification
VNS: method

Input @ Vi, Vb, ..., Vk neighborhood structures.
@ Initial solution xg.

Initialization @ x. <+ xg
@ k+1

Iterations Repeat
@ Apply local search from x. using neighborhood V/

x4 LS(xc, Vi)

o If f(xT) < f(xc), then xc «— xT, k + 1.
@ Otherwise, k + k + 1.

Until k = K.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 108 /126



B
VNS: example for the knapsack problem

@ Neighborhood of size k: modify k variables.
@ Local search: current iterate: x.

o randomly select a neighbor x™
o if wixt < W and u"xt > uTx., then x. « x*
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B
VNS: example for the knapsack problem

300 T T T 1 T T T T T ]-2
411
250 410
49 o]
200 | 18 38
X 17 ‘g
": 150' —6 é
L 45
100 la 2
50 t 13
42
0 1 1 1 1 1

0 2 4 6 8'10 12 14 16 18 20

Iterations
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Algorithms Diversification

Simulated annealing

Analogy with metallurgy
@ Heating a metal and then cooling it down slowly improves its
properties.
@ The atoms take a more solid configuration.
In optimization:
@ Local search can both decrease and increase the objective function.
@ At “high temperature”, it is common to increase.
@ At “low temperature”, increasing happens rarely.
@ Simulated annealing: slow cooling = slow reduction of the probability
to increase.
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Algorithms Diversification

Simulated annealing

Modify the local search.

For the sake of simplicity: consider a neighborhood structure containing
only feasible solutions.

Let x, be the current iterate

@ Select y € V(xk).
o If f(y) < f(xk), then xx11 =y.
@ Otherwise, x,+1 = y with probability

_ fO)—Fx)
e T
with T > 0.
Concretely, draw r between 0 and 1.
Accept y as next iterate if
_ fO)—Fx)
€ T >r
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Algorithms Diversification

Simulated annealing

Prob(xx41 = y) =

F)—Fx)

1 if F(y) < ()
e T iff(y)> f(x«)

o If T is high (hot temperature), high probability to increase.

@ If T is low, almost only decreases.
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Algorithms Diversification

Simulated annealing

Example : f(xx) =3

1 T T T T T T T T
—~ 08
>
T o6
&
X
- 04
: f(y) =5 e |
V) = 6 e
0 1 1 |y 1 1
0 1 2 3 4 5 6 7 8 9
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Algorithms Diversification

Simulated annealing

@ In practice, start with high T for flexibility.

@ Then, decrease T progressively.
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Algorithms Diversification

Simulated annealing

Initial solution xg

Initial temperature Tp, minimum temperature Tr
Neighborhood structure V/(x)

Maximum number of iterations K

Input

]
*]
]
*]

Initialize xc < xg, x* < x0, T < Tp
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Algorithms Diversification

Simulated annealing

Repeat k «+ 1
o While k < K
@ Randomly select a neighbor y € V/(x.)

5§ fy) — fx)
Ifo <0, xc=y.
Otherwise, draw r between 0 and 1
o If r < exp(—d/T), then xc =y

o If f(xc) < f(x*), x* = x.

o k+ k+1
@ Reduce T

Until T < T

¢ ¢ ©
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Algorithms Diversification

Example: traveling salesman problem

320 1000
300 900
280 800
260 700
240 600
X 220 500
200 400
180 300
160 200
140 100
120 0
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Algorithms Diversification

Best solution found

Length : 128.8 [Optimal!]
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Algorithms Diversification

Practical comments

@ Parameters must be tuned.
@ In particular, the reduction rate of the temperature must be specified.

Let ; be a typical increase of the objective function.
In the beginning, we want such an increase to be accepted with

probability py (e.g. po = 0.999)
@ At the end, we want such an increase to be accepted with probability

pr (e.g. pr = 0.00001)
We allow for M updates of the temperature. So, for m=20,..., M,

= In(Po + pfA—/IPO m)

¢ ©

©
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Algorithms Diversification

Comments

How to avoid being blocked in local minimum?
@ Apply an algorithm from multiple starting points.

o How to find feasible starting point?
@ How to avoid shooting in the dark?

@ Change the structure of the neighborhood: variable neighborhood
search

@ How to choose the neighborhood structures?
@ Allow the algorithm to proceed upwards: simulated annealing

@ Climb the mountain to find another valley.
@ How to decide when it is time to climb or to go down?
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Outline

@ Summary
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Combinatorial optimization

Chacteristics
@ f and U have no specific property.
o f is a black box.

@ U is a finite set of valid configurations.

@ No optimality condition is available.
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Optimization methods

Exact methods (branch and bound)
@ Finds the optimal solution.
@ Suffers from the curse of dimensionality.

@ Requires the availability of valid and tight bounds.

Approximation algorithms
@ Finds a sub-optimal solution.
@ Guarantees a bound on the quality of the solution.

@ Mainly used for theoretical purposes.

Heuristics
@ Smart exploration of the solution space.

@ No guarantee about optimality.

@ Few assumptions about the problem.
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Summary

Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification

Escape from local minima
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Meta-heuristics

@ Methods designed to escape from local optima are sometimes called
“meta-heuristics” .

@ Plenty of variants are available in the literature.

@ In general, success depends on exploiting well the properties of the
problem at hand.

@ VNS is one of the simplest to code.

@ Additional bio-inspired methods have also been proposed and applied:
genetic algorithms, ant colony optimization, etc.
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