Optimization and Simulation
 Drawing from distributions

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

TRANSP-DR

Outline

(1) Discrete distributions

(2) Continuous distributions
(3) Transforming draws

4 Monte-Carlo integration
(5) Summary
(6) Appendix

Discrete distributions

- Let X be a discrete r.v. with pmf:

$$
P\left(X=x_{i}\right)=p_{i}, i=0, \ldots,
$$

where $\sum_{i} p_{i}=1$.

- The support can be finite or infinite.
- We know how to draw from $U(0,1)$.
- How can we draw from X ?

Inverse Transform Method: illustration

Discrete distributions

Inverse transform method
(1) Let r be a draw from $U(0,1)$.
(2) Initialize $k=0, p=0$.
(3) $p=p+p_{k}$.
(9) If $r<p$, set $X=x_{k}$ and stop.
(3) Otherwise, set $k=k+1$ and go to step 3 .

Discrete distributions

Acceptance-rejection

- Attributed to von Neumann.
- We want to draw from X with pmf p_{i}.
- We know how to draw from Y with pmf q_{i}.

Define a constant $c \geq 1$ such that

$$
\frac{p_{i}}{q_{i}} \leq c \forall i \text { s.t. } p_{i}>0
$$

Algorithm
(1) Draw y from Y
(2) Draw r from $U(0,1)$
(3) If $r<\frac{p_{y}}{c q_{y}}$, return $x=y$ and stop. Otherwise, start again.

Acceptance-rejection: analysis

Probability to be accepted during a given iteration

$$
\begin{array}{rlrl}
P(Y=y, \text { accepted }) & =P(Y=y) & & P(\text { accepted } \mid Y=y) \\
& =q_{y} & p_{y} / c q_{y} \\
& =\frac{p_{y}}{c} & &
\end{array}
$$

Probability to be accepted

$$
\begin{aligned}
P(\text { accepted }) & =\sum_{y} P(\text { accepted } \mid Y=y) P(Y=y) \\
& =\sum_{y} \frac{p_{y}}{c q_{y}} q_{y} \\
& =1 / c .
\end{aligned}
$$

Probability to draw x at iteration n

$$
P(X=x \mid n)=\left(1-\frac{1}{c}\right)^{n-1} \frac{p_{x}}{c}
$$

Acceptance-rejection: analysis

$$
\begin{aligned}
P(X=x) & =\sum_{n=1}^{+\infty} P(X=x \mid n) \\
& =\sum_{n=1}^{+\infty}\left(1-\frac{1}{c}\right)^{n-1} \frac{p_{x}}{c} \\
& =c \frac{p_{x}}{c} \\
& =p_{x}
\end{aligned}
$$

Reminder: geometric series

$$
\sum_{n=0}^{+\infty} x^{n}=\frac{1}{1-x}
$$

Acceptance-rejection: analysis

Remarks

- Average number of iterations: c
- The closer c is to 1 , the closer the pmf of Y is to the pmf of X.

Outline

(1) Discrete distributions

(2) Continuous distributions
(3) Transforming draws

4 Monte-Carlo integration
(5) Summary
(6) Appendix

Continuous distributions

Inverse Transform Method

- Let X be a continuous r.v. with CDF $F_{X}(\varepsilon)$
- Draw r from a uniform $U(0,1)$
- Generate $F_{X}^{-1}(r)$.

Motivation

- F_{X} is monotonically increasing
- It implies that $\varepsilon_{1} \leq \varepsilon_{2}$ is equivalent to $F_{X}\left(\varepsilon_{1}\right) \leq F_{X}\left(\varepsilon_{2}\right)$.

Inverse Transform Method

Inverse Transform Method

More formally

- Denote $F_{U}(\varepsilon)=\varepsilon$ the CDF of the r.v. $U(0,1)$
- Let G be the distribution of the r.v. $F_{X}^{-1}(U)$

$$
\begin{aligned}
G(\varepsilon) & =\operatorname{Pr}\left(F_{X}^{-1}(U) \leq \varepsilon\right) \\
& =\operatorname{Pr}\left(F_{X}\left(F_{X}^{-1}(U)\right) \leq F_{X}(\varepsilon)\right) \\
& =\operatorname{Pr}\left(U \leq F_{X}(\varepsilon)\right) \\
& =F_{U}\left(F_{X}(\varepsilon)\right) \\
& =F_{X}(\varepsilon)
\end{aligned}
$$

Inverse Transform Method

Examples: let r be a draw from $U(0,1)$

Name	$F_{X}(\varepsilon)$	Draw
Exponential (b)	$1-e^{-\varepsilon / b}$	$-b \ln r$

$\operatorname{Logistic}(\mu, \sigma) \quad 1 /(1+\exp (-(\varepsilon-\mu) / \sigma)) \quad \mu-\sigma \ln \left(\frac{1}{r}-1\right)$
$\operatorname{Power}(n, \sigma)$
$(\varepsilon / \sigma)^{n}$
$\sigma r^{1 / n}$

Note
The CDF is not always available (e.g. normal distribution).

Continuous distributions

Rejection Method

- We want to draw from X with pdf f_{X}.
- We know how to draw from Y with pdf f_{Y}.

Define a constant $c \geq 1$ such that

$$
\frac{f_{X}(\varepsilon)}{f_{Y}(\varepsilon)} \leq c \forall \varepsilon
$$

Algorithm
(1) Draw y from Y
(2) Draw r from $U(0,1)$
(3) If $r<\frac{f_{X}(y)}{c f_{Y}(y)}$, return $x=y$ and stop. Otherwise, start again.

Rejection Method: example

Draw from a normal distribution

- Let $\bar{X} \sim N(0,1)$ and $X=|\bar{X}|$
- Probability density function: $f_{X}(\varepsilon)=\frac{2}{\sqrt{2 \pi}} e^{-\varepsilon^{2} / 2}, 0<\varepsilon<+\infty$
- Consider an exponential r.v. with pdf $f_{Y}(\varepsilon)=e^{-\varepsilon}, 0<\varepsilon<+\infty$
- Then

$$
\frac{f_{X}(\varepsilon)}{f_{Y}(\varepsilon)}=\frac{2}{\sqrt{2 \pi}} e^{\varepsilon-\varepsilon^{2} / 2}
$$

- The ratio takes its maximum at $\varepsilon=1$, therefore

$$
\frac{f_{X}(\varepsilon)}{f_{Y}(\varepsilon)} \leq \frac{f_{X}(1)}{f_{Y}(1)}=\sqrt{2 e / \pi} \approx 1.315
$$

- Rejection method, with $\frac{f_{X}(\varepsilon)}{c f_{Y}(\varepsilon)}=\frac{1}{\sqrt{e}} e^{\varepsilon-\varepsilon^{2} / 2}=e^{\varepsilon-\frac{\varepsilon^{2}}{2}-\frac{1}{2}}=e^{-\frac{(\varepsilon-1)^{2}}{2}}$

Rejection Method: example

Algorithm: draw from a normal
(1) Draw r from $U(0,1)$
(2) Let $y=-\ln (1-r)$ (draw from the exponential)
(3) Draw s from $U(0,1)$
(3) If $s<e^{-\frac{(y-1)^{2}}{2}}$ return $x=y$ and go to step 5. Otherwise, go to step 1.
(5) Draw t from $U(0,1)$.
(0) If $t \leq 0.5$, return x. Otherwise, return $-x$.

Note
This procedure can be improved. See [Ross, 2012, Chapter 5].

Draws from the exponential

Rejected draws

Accepted draws

Rejected and accepted draws

Drawing from the standard normal distribution

- Accept/reject algorithm is not efficient
- Polar method: no rejection (see appendix)

Transformations of standard normal

- If r is a draw from $N(0,1)$, then

$$
s=b r+a
$$

is a draw from $N\left(a, b^{2}\right)$

- If r is a draw from $N\left(a, b^{2}\right)$, then

$$
e^{r}
$$

is a draw from a \log normal $\operatorname{LN}\left(a, b^{2}\right)$ with mean

$$
e^{a+\left(b^{2} / 2\right)}
$$

and variance

$$
e^{2 a+b^{2}}\left(e^{b^{2}}-1\right)
$$

Multivariate normal

- If r_{1}, \ldots, r_{n} are independent draws from $N(0,1)$, and

$$
r=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right)
$$

- then

$$
s=a+L r
$$

is a vector of draws from the n-variate normal $N\left(a, L L^{T}\right)$, where

- L is lower triangular, and
- $L L^{T}$ is the Cholesky factorization of the variance-covariance matrix

Multivariate normal

Example:

$$
\begin{gathered}
L=\left(\begin{array}{rrr}
\ell_{11} & 0 & 0 \\
\ell_{21} & \ell_{22} & 0 \\
\ell_{31} & \ell_{32} & \ell_{33}
\end{array}\right) \\
s_{1}=\ell_{11} r_{1} \\
s_{2}=\ell_{21} r_{1}+\ell_{22} r_{2} \\
s_{3}=\ell_{31} r_{1}+\ell_{32} r_{2}+\ell_{33} r_{3}
\end{gathered}
$$

Outline

(1) Discrete distributions

(2) Continuous distributions
(3) Transforming draws
(4) Monte-Carlo integration
(5) Summary
(6) Appendix

Transforming draws

Method

- Consider draws from the following distributions:
- normal: $N(0,1)$ (draws denoted by ξ below)
- uniform: $U(0,1)$ (draws denoted by r below)
- Draws R from other distributions are obtained from nonlinear transforms.

Lognormal(a,b)

$$
f(x)=\frac{1}{x b \sqrt{2 \pi}} \exp \left(\frac{-(\ln x-a)^{2}}{2 b^{2}}\right) \quad R=e^{a+b \xi}
$$

Transforming draws

Cauchy(a,b)

$$
f(x)=\left(\pi b\left(1+\left(\frac{x-a}{b}\right)^{2}\right)\right)^{-1} \quad R=a+b \tan \left(\pi\left(r-\frac{1}{2}\right)\right)
$$

$\chi^{2}(a)$ (a integer)

$$
f(x)=\frac{x^{(a-2) / 2} e^{-x / 2}}{2^{a / 2} \Gamma(a / 2)} \quad R=\sum_{j=1}^{a} \xi_{j}^{2}
$$

Erlang(a,b) (b integer)

$$
f(x)=\frac{(x / a)^{b-1} e^{-x / a}}{a(b-1)!} \quad R=-a \sum_{j=1}^{b} \ln r_{i}
$$

Transforming draws

Exponential(a)

$$
F(x)=1-e^{-x / a} \quad R=-a \ln r
$$

Extreme Value(a,b)

$$
F(x)=1-\exp \left(-e^{-(x-a) / b}\right) \quad R=a-b \ln (-\ln r)
$$

Logistic(a,b)

$$
F(x)=\left(1+e^{-(x-a) / b}\right)^{-1} \quad R=a+b \ln \left(\frac{r}{1-r}\right)
$$

Transforming draws

Pareto(a,b)

$$
F(x)=1-\left(\frac{a}{x}\right)^{b} \quad R=a(1-r)^{-1 / b}
$$

Standard symmetrical triangular distribution

$$
f(x)=\left\{\begin{array}{ll}
4 x & \text { if } 0 \leq x \leq 1 / 2 \\
4(1-x) & \text { if } 1 / 2 \leq x \leq 1
\end{array} \quad R=\frac{r_{1}+r_{2}}{2}\right.
$$

Weibull(a,b)

$$
F(x)=1-e^{-\left(\frac{x}{a}\right)^{b}} \quad R=a(-\ln r)^{1 / b}
$$

Outline

(1) Discrete distributions

(2) Continuous distributions
(3) Transforming draws
(4) Monte-Carlo integration
(5) Summary
(6) Appendix

Monte-Carlo integration

Expectation

- X r.v. on $[a, b], a \in \mathbb{R} \cup\{-\infty\}, b \in \mathbb{R} \cup\{+\infty\}$
- Expectation of X :

$$
\mathrm{E}[X]=\int_{a}^{b} x f_{X}(x) d x
$$

- If $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function, then

$$
\mathrm{E}[g(X)]=\int_{a}^{b} g(x) f_{X}(x) d x
$$

Monte-Carlo integration

Simulation

$$
\mathrm{E}[g(X)] \approx \frac{1}{R} \sum_{r=1}^{R} g\left(x_{r}\right)
$$

Approximating the integral

$$
\int_{a}^{b} g(x) f_{X}(x) d x=\lim _{R \rightarrow \infty} \frac{1}{R} \sum_{r=1}^{R} g\left(x_{r}\right)
$$

so that

$$
\int_{a}^{b} g(x) f_{X}(x) d x \approx \frac{1}{R} \sum_{r=1}^{R} g\left(x_{r}\right)
$$

Monte-Carlo integration

Calculating $I=\int_{a}^{b} g(x) f_{X}(x) d x$

- Consider X with pdf f_{X}.
- Convenient choice: $X \sim U[0,1]$, as $f_{U}(x)=1, \forall x$.
- Generate R draws $x_{r}, r=1, \ldots, R$ from X;
- Calculate

$$
I \approx \widehat{\jmath}=\frac{1}{R} \sum_{r=1}^{R} g\left(x_{r}\right)
$$

Monte-Carlo integration

Approximation error

- Sample variance:

$$
V_{R}=\frac{1}{R-1} \sum_{r=1}^{R}\left(g\left(x_{r}\right)-\widehat{l}\right)^{2}
$$

- By simulation: as

$$
\operatorname{Var}[g(X)]=\mathrm{E}\left[g(X)^{2}\right]-\mathrm{E}[g(x)]^{2}
$$

we have

$$
V_{R} \approx \frac{1}{R} \sum_{r=1}^{R} g\left(x_{r}\right)^{2}-\widehat{l}^{2}
$$

Monte-Carlo integration

Approximation error
95% confidence interval: $\left[\widehat{I}-1.96 e_{R} \leq I \leq \widehat{I}+1.96 e_{R}\right]$ where

$$
e_{R}=\sqrt{\frac{V_{R}}{R}}
$$

Monte-Carlo integration

Example

$$
\int_{0}^{1} e^{x} d x=e-1=1.7183
$$

- Random variable X uniformly distributed $\left(f_{X}(\varepsilon)=1\right)$
- $g(X)=e^{X}$
- $\operatorname{Var}\left(e^{X}\right)=\frac{e^{2}-1}{2}-(e-1)^{2}=0.2420$

R	10	100	1000
\widehat{l}	1.8270	1.7707	1.7287
Sample variance	0.1607	0.2125	0.2385
Simulated variance	0.1742	0.2197	0.2398

Monte-Carlo integration

Monte-Carlo integration

Outline

(1) Discrete distributions

(2) Continuous distributions
(3) Transforming draws

4 Monte-Carlo integration
(5) Summary
6) Appendix

Summary

- Draws from uniform distribution: available in any programming language
- Inverse transform method: requires the pmf or the CDF.
- Accept-reject: needs a "similar" r.v. easy to draw from.
- Transforming uniform and normal draws.
- First application: Monte-Carlo integration.

Outline

(1) Discrete distributions

(2) Continuous distributions
(3) Transforming draws
(4) Monte-Carlo integration
(5) Summary
6) Appendix

Uniform distribution: $X \sim U(a, b)$

pdf

$$
f_{X}(x)= \begin{cases}1 /(b-a) & \text { if } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

CDF

$$
F_{X}(x)= \begin{cases}0 & \text { if } x \leq a \\ (x-a) /(b-a) & \text { if } a \leq x \leq b \\ 1 & \text { if } x \geq b\end{cases}
$$

Mean, median
$(a+b) / 2$
Variance
$(b-a)^{2} / 12$

Normal distribution: $X \sim N(a, b)$

pdf

$$
f_{X}(x)=\frac{1}{b \sqrt{2 \pi}} \exp \left(-\frac{(x-a)^{2}}{2 b^{2}}\right)
$$

CDF

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

Mean, median a

Variance b^{2}

The polar method

Draw from a normal distribution

- Let $X \sim N(0,1)$ and $Y \sim N(0,1)$ independent
- pdf:

$$
f(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

- Let R and θ such that $R^{2}=X^{2}+Y^{2}$, and $\tan \theta=Y / X$.

The polar method

Change of variables (reminder)

- Let A be a multivariate r.v. distributed with pdf $f_{A}(a)$.
- Consider the change of variables $b=H(a)$ where H is bijective and differentiable
- Then $B=H(A)$ is distributed with pdf

$$
f_{B}(b)=f_{A}\left(H^{-1}(b)\right)\left|\operatorname{det}\left(\frac{d H^{-1}(b)}{d b}\right)\right|
$$

Here: $A=(X, Y), B=\left(R^{2}, \theta\right)=(T, \theta)$

$$
H^{-1}(b)=\binom{T^{\frac{1}{2}} \cos \theta}{T^{\frac{1}{2}} \sin \theta} \quad \frac{d H^{-1}(b)}{d b}=\left(\begin{array}{cc}
\frac{1}{2} T^{-\frac{1}{2}} \cos \theta & -T^{\frac{1}{2}} \sin \theta \\
\frac{1}{2} T^{-\frac{1}{2}} \sin \theta & T^{\frac{1}{2}} \cos \theta
\end{array}\right)
$$

The polar method

$$
H^{-1}(b)=\binom{T^{\frac{1}{2}} \cos \theta}{T^{\frac{1}{2}} \sin \theta} \quad \frac{d H^{-1}(b)}{d b}=\left(\begin{array}{cc}
\frac{1}{2} T^{-\frac{1}{2}} \cos \theta & -T^{\frac{1}{2}} \sin \theta \\
\frac{1}{2} T^{-\frac{1}{2}} \sin \theta & T^{\frac{1}{2}} \cos \theta
\end{array}\right)
$$

Therefore,

$$
\left|\operatorname{det}\left(\frac{d H^{-1}(b)}{d b}\right)\right|=\frac{1}{2}
$$

and

$$
f_{B}(T, \theta)=\frac{1}{2} \frac{1}{2 \pi} e^{-T / 2}, \quad 0<T<+\infty, \quad 0<\theta<2 \pi
$$

Product of

- an exponential with mean 2: $\frac{1}{2} e^{-T / 2}$
- a uniform on $[0,2 \pi[: 1 / 2 \pi$

The polar method

Therefore

- R^{2} and θ are independent
- R^{2} is exponential with mean 2
- θ is uniform on ($0,2 \pi$)

Algorithm
(1) Let r_{1} and r_{2} be draws from $U(0,1)$.
(2) Let $R^{2}=-2 \ln r_{1}$ (draw from exponential of mean 2)
(3) Let $\theta=2 \pi r_{2}$ (draw from $U(0,2 \pi)$)
(ㄱ) Let

$$
\begin{aligned}
& X=R \cos \theta=\sqrt{-2 \ln r_{1}} \cos \left(2 \pi r_{2}\right) \\
& Y=R \sin \theta=\sqrt{-2 \ln r_{1}} \sin \left(2 \pi r_{2}\right)
\end{aligned}
$$

The polar method

Issue
Time consuming to compute sine and cosine

Solution

Generate directly the result of the sine and the cosine

- Draw a random point $\left(s_{1}, s_{2}\right)$ in the circle of radius one centered at $(0,0)$.
- How? Draw a random point in the square $[-1,1] \times[-1,1]$ and reject points outside the circle
- Let (R, θ) be the polar coordinates of this point.
- $R^{2} \sim U(0,1)$ and $\theta \sim U(0,2 \pi)$ are independent

$$
\begin{aligned}
R^{2} & =s_{1}^{2}+s_{2}^{2} \\
\cos \theta & =s_{1} / R \\
\sin \theta & =s_{2} / R
\end{aligned}
$$

The polar method

Original transformation

$$
\begin{aligned}
& X=R \cos \theta=\sqrt{-2 \ln r_{1}} \cos \left(2 \pi r_{2}\right) \\
& Y=R \sin \theta=\sqrt{-2 \ln r_{1}} \sin \left(2 \pi r_{2}\right)
\end{aligned}
$$

Draw $\left(s_{1}, s_{2}\right)$ in the circle

$$
\begin{aligned}
t & =s_{1}^{2}+s_{2}^{2} \\
X & =R \cos \theta=\sqrt{-2 \ln t} \frac{s_{1}}{\sqrt{t}}=s_{1} \sqrt{\frac{-2 \ln t}{t}} \\
Y & =R \sin \theta=\sqrt{-2 \ln t} \frac{s_{2}}{\sqrt{t}}=s_{2} \sqrt{\frac{-2 \ln t}{t}}
\end{aligned}
$$

The polar method

Algorithm
(1) Let r_{1} and r_{2} be draws from $U(0,1)$.
(2) Define $s_{1}=2 r_{1}-1$ and $s_{2}=2 r_{2}-1$ (draws from $U(-1,1)$).
(3) Define $t=s_{1}^{2}+s_{2}^{2}$.
(9) If $t>1$, reject the draws and go to step 1 .
(3) Return

$$
x=s_{1} \sqrt{\frac{-2 \ln t}{t}} \text { and } y=s_{2} \sqrt{\frac{-2 \ln t}{t}}
$$

Bibliography

R Ross, S. M. (2012).
Simulation.
Elsevier, fifth edition.

