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Motivation

Engineering systems

Definition (Wikipedia)

Combination of components that work in
synergy to collectively perform a useful
function.

Properties

Complex

Large

Designed

Configurable

Interactions with external world Source: Wikipedia
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Motivation

Engineering systems

Objectives

Design

Maintain

Operate

Time horizon

Long-term

Medium-term

Short-term
Source: Swiss Learning Exchange
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Motivation

Engineering systems

Mathematical and digital twins

Modeling

Simulation

Optimization

Source: Konica Minolta
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Motivation

Engineering systems

Modeling Simulation Optimization

Roles Represent Predict Improve
How? Capture causal

effects
Capture the
propagation of
uncertainty

Investigate
better configu-
rations
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Modeling

Modeling

System

A system can be seen as a black box, modeled by

z = h(x , y , u; θ)

External input — yControl — u

Complex system — state x

Indicators — z
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Modeling

Modeling

z = h(x , y , u; θ)

Example

A car:

x captures the state of the system (e.g. speed, position of other
vehicles)

y captures external influences (e.g. wind)

u captures possible human controls on the system (e.g.
acceleration/deceleration)

z represents indicators of performance (e.g. oil consumption).
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Modeling

Modeling

Decompose the complexity

The model h is usually decomposed to reflect the interactions of the
subsystems

For example,

a car-following model captures the target speed of the driver,
an engine model derives the actual consumption as a function of the
acceleration.
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Modeling

Modeling

Causal effects

Very important to identify the
causal effects

Failure to do so may generate
wrong conclusions

Forecasting

Assumption: causal effects are
stable over time and configurations
of the system.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 11 / 44



Modeling

Data can be misleading

Chocolate Consumption, Cognitive Function, and Nobel Laureates

Source: [Messerli, 2012]
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Modeling

Inference

Data collection

On an existing system, collect N observations of xn, yn, un, zn,
n = 1, . . . ,N.

Goodness of fit

For a given value of θ, “distance” dn(θ) between

the predicted value h(xn, yn, un; θ), and

the observed value zn.

Inference

Find θ̂ that minimizes the total distance:

θ̂ = argminθ

N∑

n=1

dn(θ).
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Simulation

Simulation is more than simply applying the model.

z = h(x , y , u; θ̂)

External input — yControl — u

Complex system — state x

Indicators — z



Simulation

Simulation

Z = h(X ,Y ,U; θ̂) + εz
εyεu

εx

εz

External input — yControl — u

Complex system — state x

Indicators — z
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Simulation

Simulation

Propagation of uncertainty

Z = h(X ,Y ,U; θ̂) + εz

Given the distribution of X , Y , U and εz

what is the distribution of Z?
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Simulation

Simulation

Sampling

Draw realizations of X , Y , U, εz

Call them x r , y r , ur , εrz

For each r , compute

z r = h(x r , y r , ur ; θ̂) + εrz

z r are draws from the random variable Z

Analysis

Generate many draws from Z .

Analyze their empirical distribution.
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Simulation

Importance of number of draws

Theory vs. practice

Theory: true distribution of Z when r → ∞.

Practice: finite number R of draws.

If R is too small, simulator output is just noise.

Analogy with real world

Nature also generates instances of a complex random variable.

Experiments must be repeated in order to reach conclusions.

Example: policy analysis

The real impact of a policy is difficult to analyze.

Incomplete results that are consistent with expectations may lead to
erroneous conclusions.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 19 / 44



Simulation

Example: improving safety

Accidents in Kid City

The mayor of Kid City has commissioned a consulting company

Objective: assess the effectiveness of safety campaigns

They propose to use simulation
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Simulation

Example: improving safety

Accidents in Kid City
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Simulation

Example: improving safety

Accidents in Kid City:
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Simulation

Example: improving safety

Accidents in Kid City
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Simulation

Example: improving safety

Accidents in Kid City
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Simulation

Example: improving safety

Accidents in Kid City:

12 93 6
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Simulation

Example: improving safety

Two major flaws

Causal effects are not modeled

Simulation performed with only one draw

What should have been done

Simulate the number of accidents many times.

If so, the average number of accidents is around 7, everywhere, with
or without the sticker.

A formal statistical test would not reject the null hypothesis that the
sticker has no effect.
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Data analysis

Simulation

Derivation of indicators from the distribution

Mean

Variance

Modes

Quantiles
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Data analysis

Statistics

Indicators

Mean: E[Z ] ≈ Z̄R = 1
R

∑R
r=1 z

r

Variance:
Var(Z ) ≈ 1

R

∑R
r=1 (z

r − Z̄R)
2
.

Modes: based on the histogram

Quantiles: sort and select

Important: there is more than the mean
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Data analysis

The mean

[Savage et al., 2012]
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Data analysis

The mean

The flaw of averages
[Savage et al., 2012]

E[Z ] = E[h(X ,Y ,U; θ̂) + εz ] 6= h(E[X ],E[Y ],E[U]; θ̂) + E[εz ]

... except if h is linear.
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Data analysis

There is more than the mean

Example

Intersection with capacity 2000 veh/hour

Traffic light: 30 sec green / 30 sec red

Constant arrival rate: 2000 veh/hour during 30
minutes

With 30% probability, capacity at 80%.

Indicator: Average time spent by travelers
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Data analysis

There is more than the mean
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Average travel time (sec)
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Data analysis

Pitfalls of simulation

Few number of runs

Run time is prohibitive

Tempting to generate partial results rather than no result

Focus solely on the mean

The mean is useful, but not sufficient.

For complex distributions, it may be misleading.

Intuition from normal distribution (mode = mean, symmetry) do not
hold in general.

Important to investigate the whole distribution.

Simulation allows to do it easily.
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Data analysis

Challenges

How to generate draws from Z?

How to represent complex systems? (specification of h)

How large R should be?

How good is the approximation?
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Data analysis

Pseudo-random numbers

Definition

Deterministic sequence of numbers

which have the appearance of draws from a U(0, 1) distribution

Typical sequence

xn = axn−1 modulo m

This has a period of the order of m

So, m should be a large prime number

For instance: m = 231 − 1 and a = 75

xn/m lies in the [0, 1[ interval
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Data analysis

Outline of the lectures

Drawing from distributions

Discrete event simulation

Data analysis

Variance reduction

Markov Chain Monte Carlo

Reference

[Ross, 2012]
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Optimization

Optimization

Assumptions

Control U is deterministic.

Z (u) = h(X ,Y , u) + εz

Various features of Z are considered: mean, variance, quantile, etc.

(z1(u), . . . , zm(u))

They are combined in a single indicator:

f (u) = g(z1(u), . . . , zm(u))

If not, it is called multi-objective optimization.
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Optimization

General framework: the black box

εy

εx

εz

External input — yControl — u

Complex system — state x

Indicators — zf (u)
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Optimization

Optimization problem

min
u∈Rn

f (u)

subject to
u ∈ U ⊆ R

n

u: decision variables

f (u): objective function

u ∈ U : constraints

U : feasible set
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Optimization

In this course. . .

Classical optimization problems

Heuristics

Multi-objective optimization
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Optimization

Summary

Modeling

Decomposition of the complexity.

Causal effects.

Simulation

Propagation of uncertainty.

Requires many draws.

Analysis of the entire empirical distribution.

There is more than the mean.

Optimization

Identify the control that improves a function of the indicators.

Optional: multi-objective optimization.
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Optimization
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