
Laboratory 6

Optimization Exercises
20.04.2021 & 27.04.2021

Melvin Wong

Transport and Mobility Laboratory TRANSP-OR

École Polytechnique Fédérale de Lausanne EPFL 

Optimization and Simulation Winter 2021



Goals

• Understand the limitation of full enumeration

• Understand and apply optimization algorithms:

• Greedy algorithm

• Local search

• Variable neighborhood search

• Simulated annealing



Lab materials

• You will use the following Python libraries in this exercise:

• numpy, plotly

Install the libraries using pip:

> pip install numpy plotly

Or if you’re using Anaconda:

> conda install numpy

> conda install –c plotly plotly

You can use other plotting libraries yoo.



Overview

Travelling salesman problem

Implementation functions:

- Full enumeration

- Greedy algorithm

- Local search

- Variable neighborhood search

- Simulated annealing



Optimization Exercise 1 – Travelling Salesman 
Problem



Travelling Salesman Problem

A salesman must visit 𝑛 cities

• He starts and ends the trip at her home city

• Assume cost of travel to be total trip length

What sequence of cities minimizes the travel cost?



Travelling Salesman Problem

Cities are consecutively numbered: 1, 2, … , 𝑛

We encode solutions as 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥1)where

• 𝑥1is the index of the home city

• 𝑥𝑖 is the index of 𝑖𝑡ℎ city visited along the way

• 𝑥𝑛 is the last city visited before returning home

• Every city must be visited exactly once



Lab exercises – implementation of optimization 
algorithms



Core functionality

Function to implement

def simulateCities(n_cities, seed)

Test the function

def drawSalesman(path, cities)

Implementation functions



Objective Function

Function to implement

evaluate(path, cities)

Calculate the total distance travelled

Test the function

distance = evaluate(…)

Show that the distance traveled is accurate

Implementation functions



6.1 Full enumeration



Exercise

1. Function to implement

generateNewCitySeq_fe()

FullEnumeration()

2. Test the function

OptimizationTSPTest()

Calculate the computational time limitations of the full 
enumeration.

What is the maximum problem size (number of cities) that 
you could solve with this approach?

Full enumeration



6.2 Greedy algorithm



In class Exercise

Function to implement 

generateNewCitySeq_gs()

GreedySearch()

Test the function

OptimizationTSPTest()

Greedy algorithm



6.3 Local search



Exercise

Function to implement

GenerateNewCitySequence_ls()

LocalSearch()

Test the function 

OptimizationTSPTest()

Local search



6.4 Variable neighborhood search



Exercise

Function to implement

VNS()

Test the function

OptimizationTSPTest()

Variable neighborhood search



6.5 Simulated annealing



Exercise

Function to implement

generateNewCitySequence_sa()

temperature()

SimulatedAnnealing()

Test the function

OptimizationTSPTest()

• Investigate the effect of different parameters

Simulated Annealing



IMPORTANT!

The suggested framework is only a suggestion!

Feel free to organize the code in the manner you find the 
most appropriate!



Sample results



RandomizeCitySequence

Sample results

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ten histograms from left to right

Each one showing the distribution of the cities in that position



An initial solution

Sample results



A final solution

Sample results



Simulated Annealing

Sample results



Simulated Annealing

Sample results



Optimization Exercise 2 – Knapsack problem



Knapsack Problem

• A salesman is planning his visit to the market and wants to 
select items he will try to sell.

• Each item 𝑖 is characterized by its price 𝑝𝑖 and weight 𝑤𝑖, 
which are given on the next slide

• There are 60 items in total.

• Logically, he would like to take as many items as possible, 
but his van has a weight limitation of max. 150 kilograms.

What is the set of items which will maximize the profit?



Knapsack Problem

• Price 𝑝𝑖 and weight 𝑤𝑖 for each item 𝑖:

𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑝𝑖 80 31 48 17 27 84 34 39 46 58 23 67 62 79 38 44 31 50 72 71

𝑤𝑖 84 27 47 22 21 96 42 46 54 53 32 78 64 82 33 49 28 56 77 69

𝑖 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

𝑝𝑖 73 32 49 21 25 91 36 19 8 74 56 41 62 89 48 54 11 41 52 54

𝑤𝑖 79 29 51 19 23 94 39 16 8 69 61 38 59 92 43 59 18 44 58 67

𝑖 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

𝑝𝑖 9 21 58 26 57 65 54 48 36 49 34 75 59 86 24 51 41 63 72 45

𝑤𝑖 14 26 57 33 51 72 62 52 44 55 43 83 70 93 23 56 40 66 75 49



Tasks

• Try to solve the problem with the full enumeration

• Test the following optimization algorithms:

• Variable neighborhood search (VNS), by 
implementing at least 3 neighborhood structures, and

• Simulated annealing (SA)

• Use the full enumeration solution as a benchmark, if 
obtained.



Problem Encoding

• Let us label each item with an integer: 1, 2,… , 𝑛

• We encode solutions as 𝑥 = (𝑥1 𝑥2 … 𝑥𝑖… 𝑥𝑛) where

• 𝑥𝑖 is the 0-1 variable denoting if the item 𝑖 is selected 
into the knapsack



Presentation of results

• Average number of appearances of each item in the 
knapsack

• Solutions achieved with all three algorithms

• Trend of the objective function value and temperatures in 
the case of SA



Deliverables

1. Python notebook file with your implementations and 
results

1. Travelling salesman problem

2. Knapsack problem

Submit as .ipynb file:

• Code

• Visualizations/Results

Also include other .py files that you used

Zip your files into one package with your project

Send it to the TAs by 01.06.2021 12 PM


