Optimization and Simulation

Optimization project

Melvin Wong

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

Goals

Full application of a simulation-based optimization example:

- Simulation
 - develop a discrete-event simulation
 - identify the appropriate statistical indexes
 - correctly use simulation for generating results
 - correctly analyze the result of simulation
 - use variance reduction techniques
 - use bootstrapping technique
- Optimization
 - identify the decision variables
 - identify the objectives
 - develop the optimization algorithm to explore the space
 - identify the "optimal" solutions (multi-objectives)

Overview

Aim: identify the "optimal" system configuration

Example

simulation-based project: traffic simulation

Simulation project example

Traffic simulation of Kid City

Discrete event simulation to represent the traffic in Kid City

What is the best street to close?

Decision variables:

Close roads

Objectives:

- traffic conditions (queue-length)
- cost

Keep in mind

The Optimization Problem

Objective: identify the best location for the road closure.

Objective function example:

minimize average-queue-length in the city minimize cost of closing the road

$$\min_{x \in X} Z(x)$$

$$Z = \theta\{f(x)\}$$

where

- x is the network with road i closed
- f(x) is the desired indicator at solution x, e.g. averagequeue-length with road i closed, and cost of closing road i
- heta is the statistic considered, e.g. maximum, 95-percentile, average

Keep in mind

Recommendations

"Optimization Project":

- expand the discrete-event simulation
- embed the discrete-event simulation in the optimization algorithm

Attention: computational time

Group project

Assigned projects

Group	Project	Title
Group 1	Project 1	Train service
Group 2	Project 2	Restaurant design
Group 3	Project 3	Drone delivery service
Group 4	Project 4	Jeans store management
Group 5	Project 5	Online movie streaming
Group 6	Project 6	Airline yield management

All information already present in the project description

Assigned projects

Group 1:

Group 2:

Group 3:

Assigned projects

Group 4:

Group 5:

Group 6:

Project and exercise deliverables

Deliverables

- Please submit by email to <u>melvin.wong@epfl.ch</u>:
 - Jupyter Notebook from the TSP (lab 6) exercise
 - Project presentation in the PDF format
 - Jupyter Notebook developed for the project
- Please group all deliverables into a single archive (e.g. OptSim2019_GroupX.zip)
- Deadline: 25.05.2020 at noon

Presentation

35 minutes per group. 25 min presentation + 10 min questions (both simulation and optimization parts)

Required contents for the optimization part

- Problem description
- Decision variables, objective function
- Optimization algorithm
- Results
- Suggested "optimal" configuration

Schedule, 26.05.2020, Room GC B1 10

- May 26, 2020, at GC B1 10.
- Make sure that the 1st presentation will start 13:15 on time.
- 25 minutes presentation and 10 minutes Q&A.
- You should include both simulation and optimization parts.

Group	Time	Review		
Group 1	13:15-13:50	Group 6		
Group 2	13:50-14:25	Group 1		
Group 3	14:25-15:00	Group 2		
15 minutes break				
Group 4	15:15-15:50	Group 3		
Group 5	15:50-16:25	Group 4		
Group 6	16:25-17:00	Group 5		

