Optimization and Simulation
 Optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

Outline

(1) Introduction

(2) Classical optimization problems
(3) Greedy heuristics
(4) Heuristics

- Exploration
- Intensification
- Diversification

General framework

$$
Z=h(X, Y, U)+\varepsilon_{z}
$$

General framework

Assumptions

- Control U is deterministic.

$$
Z(u)=h(X, Y, u)+\varepsilon_{z}
$$

- Various features of Z are considered: mean, variance, quantile, etc.

$$
\left(z_{1}(u), \ldots, z_{m}(u)\right)
$$

- They are combined in a single indicator:

$$
f(u)=g\left(z_{1}(u), \ldots, z_{m}(u)\right)
$$

General framework: example

Rico at Satellite

- X : number of customers in the bar
- Y : arrivals of customers
- u: service time of Rico
- $Z(u)$: waiting time of the customers
- $z_{1}(u)$: mean waiting time
- $z_{2}(u)$: maximum waiting time
- $f(u)=g\left(z_{1}(u), z_{2}(u)\right)=z_{1}+z_{2}$

General framework: the black box

Optimization problem

$$
\min _{u \in \mathbb{R}^{n}} f(u)
$$

subject to

$$
u \in \mathcal{U} \subseteq \mathbb{R}^{n}
$$

- u : decision variables
- $f(u)$: objective function
- $u \in \mathcal{U}$: constraints
- \mathcal{U} : feasible set

If \mathcal{U} is a finite set: combinatorial optimization.

Outline

(1) Introduction

(2) Classical optimization problems

(3) Greedy heuristics
4. Heuristics

- Exploration
- Intensification
- Diversification

The knapsack problem

- Patricia prepares a hike in the mountain.
- She has a knapsack with capacity W kg.
- She considers carrying a list of n items.
- Each item has a utility u_{i} and a weight w_{i}.
- What items should she take to maximize the total utility, while fitting in the knapsack?

Modeling

Decision variables

$$
x_{i}= \begin{cases}1 & \text { if item } i \text { goes into the knapsack } \\ 0 & \text { otherwise }\end{cases}
$$

Objective function

$$
\max f(x)=\sum_{i=1}^{n} u_{i} x_{i}
$$

Constraints

$$
\begin{aligned}
\sum_{i=1}^{n} w_{i} x_{i} & \leq W \\
x_{i} & \in\{0,1\} \quad i=1, \ldots, n
\end{aligned}
$$

Brute force algorithm

Enumeration

- As \mathcal{U} is finite, all solutions can be enumerated.
- Each object can be in or out, for a total of 2^{n} combinations.
- For each of them, we must:
- Check that the weight is feasible.
- If so, calculate the utility and check if it is the largest so far.

Computational time

- About $2 n$ floating point operations per combination.
- Assume a 1 Teraflops processor: 10^{12} floating point operations per second.

Brute force algorithm

Computational time

- If $n=34$, about 1 second to solve.
- If $n=40$, about 1 minute.
- If $n=45$, about 1 hour.
- If $n=50$, about 1 day.
- If $n=58$, about 1 year.
- If $n=69$, about 2583 years, more than the Christian Era.
- If $n=78$, about $1,500,000$ years, time elapsed since Homo Erectus appeared on earth.
- If $n=91$, about 10^{10} years, roughly the age of the universe.

Combinatorial optimization

- The set of feasible solutions is finite.
- But the number of feasible solutions grows exponentially with the size of the problem.
- No optimality condition can be exploited.

Traveling salesman problem

The problem

- Consider n cities.
- For any pair (i, j) of cities, the distance $d_{i j}$ between them is known.
- Find the shortest possible itinerary that starts from the home town of the salesman, visit all other cities, and come back to the origin.

Feasible solutions

- Number of feasible solutions:

$$
(n-1)!\approx \sqrt{2 \pi / n-1)}\left(\frac{n-1}{e}\right)^{n-1}
$$

- Again, the number of feasible solutions grows exponentially with the size of the problem.

TSP: example

Lausanne, Geneva, Zurich, Bern

Home town: Lausanne 3 possibilities:

- $\mathrm{L} \rightarrow \mathrm{B} \rightarrow \mathrm{Z} \rightarrow \mathrm{G} \rightarrow \mathrm{L}: 572 \mathrm{~km}$
- $\mathrm{L} \rightarrow \mathrm{B} \rightarrow \mathrm{G} \rightarrow \mathrm{Z} \rightarrow \mathrm{L}: 769 \mathrm{~km}$
- $\mathrm{L} \rightarrow \mathrm{Z} \rightarrow \mathrm{B} \rightarrow \mathrm{G} \rightarrow \mathrm{L}: 575 \mathrm{~km}$

Integer linear optimization problem

Linear optimization

$$
\min _{x \in \mathbb{R}^{n}} c^{T} x
$$

Integer Linear optimization

$$
\min _{x \in \mathbb{R}^{n}} c^{\top} x
$$

subject to

$$
\begin{aligned}
A x & =b \\
x & \geq 0 .
\end{aligned}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$.

$$
\begin{aligned}
A x & =b \\
x & \in \mathbb{N} .
\end{aligned}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and
$c \in \mathbb{R}^{n}$.

Feasible set

Polyhedron
Intersection polyhedron/integer lattice

Outline

(1) Introduction

(2) Classical optimization problems

(3) Greedy heuristics

(4) Heuristics

- Exploration
- Intensification
- Diversification

Greedy heuristics

Principles

- Step by step construction of a feasible solution.
- At each step, a local optimization is performed.
- Decisions taken at previous steps are definitive.

Properties

- Easy to implement.
- Short computational time.
- May generate poor solutions.
- Used to generate initial solutions.

Greedy heuristics

The knapsack problem

- Sort the items by decreasing order of u_{i} / w_{i}.
- For each item in this order, put it in the sack if it fits.

The traveling salesman problem

- Start from home.
- At each step, select the closest city as the next one.

TSP: 12 cities (euclidean dist.)

(6)
(5)
(8)
(H)

(7)

(11)
\square

TSP: 12 cities

(8)

11

(7)

(H)
(5)
(6)
(1)
(2)

(3)

TSP: 12 cities

(10)

(11)

(6)
(5)
(1)
(2)

(3)

TSP: 12 cities

(5)
(6)
(1)
(2)

(3)

TSP: 12 cities

(10)

(5)
(6)
(1)
(2)

(3)

TSP: 12 cities

(1)
(2)
(4)
(3)

TSP: 12 cities

(10)

(1) (2)
(4)
(3)

TSP: 12 cities

(4)

TSP: 12 cities

(4)

TSP: 12 cities

(10)

(4)

TSP: 12 cities

(10)

TSP: 12 cities

(9)

TSP: 12 cities

TSP: 12 cities

Integer optimization

Intuitive approach

- Solve the continuous relaxation.
- Round the solution.

Example

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{2}}-3 x_{1}-13 x_{2} \\
& \\
& 2 x_{1}+9 x_{2} \leq 40 \\
& 11 x_{1}-8 x_{2} \leq 82 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{N}
\end{aligned}
$$

subject to

Relaxation: feasible set

Optimal solution of the relaxation

Integrality constraints

Infeasible neighbors

Solution of the integer optimization problem

Issues

- There are 2^{n} different ways to round. Which one to choose?
- Rounding may generate an infeasible solution.
- The rounded solution may be far from the optimal solution.

Optimization methods

Exact methods (branch and bound)

- Finds the optimal solution.
- Suffers from the curse of dimensionality.

Approximation algorithms

- Finds a sub-optimal solution.
- Guarantees a bound on the quality of the solution.
- Mainly used for theoretical purposes.

Heuristics

- Smart exploration of the solution space.
- No guarantee about optimality.
- Designed to mimic manual interventions.

Outline

(1) Introduction

(2) Classical optimization problems

(3) Greedy heuristics
(4) Heuristics

- Exploration
- Intensification
- Diversification

Heuristics

Three main mechanisms
Exploration

- Objective: create operators to visit the solution space.
- Main concept: neighborhood.

Intensification

- Objective: improve an existing solution as much as possible.
- Main concepts: local search.

Diversification

- Objective: explore over regions of the solution space.
- Main concept: metaheuristics.

Neighborhood

Concept

- The feasible set is too large.
- At each iteration, restrict the optimization problem to a small feasible subset.
- Ideally, the small subset can be enumerated.
- Typically, it consists of solutions obtained from simple modifications of the current solution.
- The small subset is called a neighborhood.

Integer optimization: neighborhood

- Consider the current iterate $x \in \mathbb{Z}^{n}$.
- For each $k=1, \ldots, n$, define 2 neighbors by increasing and decreasing the value of x_{k} by one unit.
- The neighbors y^{k+} and y^{k-} are defined as

$$
y_{i}^{k+}=y_{i}^{k-}=x_{i}, \forall i \neq k, \quad y_{k}^{k+}=x_{k}+1, \quad y_{k}^{k-}=x_{k}-1 .
$$

- Example

$$
x=(3,5,2,8) \quad y^{2+}=(3,6,2,8) \quad y^{2-}=(3,4,2,8)
$$

Integer optimization: neighborhood

Integer optimization: neighborhood

- The concept of neighborhood is fairly general.
- It must be defined based on the structure of the problem.
- Creativity is required here.

Local search

- Consider the integer optimization problem

$$
\min _{x \in \mathbb{Z}^{n}} f(x)
$$

subject to

$$
x \in \mathcal{F}
$$

- Consider the neighborhood structure $V(x)$, where $V(x)$ is the set of neighbors of x.
- At each iteration k, consider the neighbors in $V\left(x_{k}\right)$ one at a time.
- For each $y \in V\left(x_{k}\right)$, if $f(y)<f\left(x_{k}\right)$, then $x_{k+1}=y$ and proceed to the next iteration.
- If $f(y) \geq f\left(x_{k}\right), \forall y \in V\left(x_{k}\right), x_{k}$ is a local minimum. Stop.

Local search: example

$$
\min _{x \in \mathbb{R}^{2}}-3 x_{1}-13 x_{2}
$$

subject to

$$
\begin{aligned}
2 x_{1}+9 x_{2} & \leq 40 \\
11 x_{1}-8 x_{2} & \leq 82 \\
x_{1}, x_{2} & \in \mathbb{N}
\end{aligned}
$$

Local search: example

Local search: example

$$
x_{0}=(6,0)-\text { Neighborhood: E-N - W - S }
$$

Local search: example

$$
x_{0}=(0,3)-\text { Neighborhood: E-N - W - S }
$$

Local search: example

$$
x_{0}=(6,0)-\text { Neighborhood: N-W - S - E }
$$

Local search: comments

- The algorithm stops at a local minimum, that is a solution better than all its neighbors.
- The outcome depends on the starting point and the structure of the neighborhood.
- The neighborhood must be sufficiently large to increase the chances of improvement, and sufficiently small to avoid a lengthy enumeration.
- Example of a neighborhood too small: one neighbor at the west.
- Example of a neighborhood too large: each feasible point is in the neighborhood.
- It is good practice to use symmetric neighborhoods:

$$
y \in V(x) \Longleftrightarrow x \in V(y)
$$

The knapsack problem

$$
\max _{x \in\{0,1\}^{n}} u^{T} x
$$

subject to

$$
w^{\top} x \leq W
$$

The knapsack problem: neighborhood

- Current solution: for each item $i, x_{i}=0$ or $x_{i}=1$.
- Neighbor solution: select an item j, and change the decision: $x_{j} \leftarrow 1-x_{j}$.
- Warning: check feasibility.
- Generalization: neighborhood of size k : select k items, and change the decision for them (checking feasibility).

The knapsack problem: neighborhood

- A neighborhood of size k modifies k variables.
- Number of neighbors:

$$
\frac{n!}{k!(n-k)!}
$$

- $k=1$: n neighbors.
- $k=n$: 1 neighbor.

TSP: 2-OPT neighborhood

2-OPT

- Select two cities.
- Swap their position in the tour.
- Visit all intermediate cities in reverse order.

Example
Current tour:

$$
\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{D}-\mathrm{E}-\mathrm{F}-\mathrm{G}-\mathrm{H}-\mathrm{A}
$$

Exchange C and G to obtain
A-B-G-F-E-D-C-H-A.

Neighborhood: 2-OPT(1,9)

Example

- Try to improve the solution using 2-OPT swapping 1 and 9 .
- Before: $\mathrm{H}-8-7-11-6-5-1-2-3-4-10-9-\mathrm{H}$ (length: 165.6)
- After: H-8-7-11-6-5-9-10-4-3-2-1-H (length: 173.3)
- No improvement.

Neighborhood: 2-OPT(1,9)

Neighborhood: 2-OPT(1,9)

Local search

- Consider each pair of nodes.
- Apply 2-OPT.
- Select the best tour.

Current tour

Best neighbor: 2-OPT $(8,4)$

Length: 155.8

Best neighbor: 2-OPT $(8,9)$

Best neighbor: 2-OPT $(11,7)$

Best neighbor: 2-OPT $(7,10)$

Best neighbor: 2-OPT $(10,9)$

Variable Neighborhood Search

- aka VNS
- Idea: consider several neighborhood structures.
- When a local optimum has been found for a given neighborhood structure, continue with another structure.

VNS: method

Input $\bullet V_{1}, V_{2}, \ldots, V_{K}$ neighborhood structures.

- Initial solution x_{0}.

Initialization

- $x_{c} \leftarrow x_{0}$
- $k \leftarrow 1$

Iterations Repeat

- Apply local search from x_{c} using neighborhood V_{k}

$$
x^{+} \leftarrow L S\left(x_{c}, V_{k}\right)
$$

- If $f\left(x^{+}\right)<f\left(x_{c}\right)$, then $x_{c} \leftarrow x^{+}, k \leftarrow 1$.
- Otherwise, $k \leftarrow k+1$.

Until $k=K$.

VNS: example for the knapsack problem

- Neighborhood of size k : modify k variables.
- Local search: current iterate: x_{c}
- randomly select a neighbor x^{+}
- if $w^{T} x^{+} \leq W$ and $u^{T} x^{+}>u^{T} x_{c}$, then $x_{c} \leftarrow x^{+}$
- Repeat 1000 times, for any k.
- The complexity is therefore independent of k.

VNS: example for the knapsack problem

Simulated annealing

Analogy with metallurgy

- Heating a metal and then cooling it down slowly improves its properties.
- The atoms take a more solid configuration.

In optimization:

- Local search can both decrease and increase the objective function.
- At "high temperature", it is common to increase.
- At "low temperature", increasing happens rarely.
- Simulated annealing: slow cooling $=$ slow reduction of the probability to increase.

Simulated annealing

Modify the local search.
For the sake of simplicity: consider a neighborhood structure containing only feasible solutions.
Let x_{k} be the current iterate

- Select $y \in V\left(x_{k}\right)$.
- If $f(y) \leq f\left(x_{k}\right)$, then $x_{k+1}=y$.
- Otherwise, $x_{k+1}=y$ with probability

$$
e^{-\frac{f(y)-f\left(x_{k}\right)}{T}}
$$

with $T>0$.
Concretely, draw r between 0 and 1. Accept y as next iterate if

$$
e^{-\frac{f(y)-f\left(x_{k}\right)}{T}}>r
$$

Simulated annealing

$$
\operatorname{Prob}\left(x_{k+1}=y\right)= \begin{cases}1 & \text { if } f(y) \leq f\left(x_{k}\right) \\ e^{-\frac{f(y)-f\left(x_{k}\right)}{T}} & \text { if } f(y)>f\left(x_{k}\right)\end{cases}
$$

- If T is high (hot temperature), high probability to increase.
- If T is low, almost only decreases.

Simulated annealing

Example: $f\left(x_{k}\right)=3$

Simulated annealing

- In practice, start with high T for flexibility.
- Then, decrease T progressively.

Simulated annealing

Input - Initial solution x_{0}

- Initial temperature T_{0}, minimum temperature T_{f}
- Neighborhood structure $V(x)$
- Maximum number of iterations K

Initialize $x_{c} \leftarrow x_{0}, x^{*} \leftarrow x_{0}, T \leftarrow T_{0}$

Simulated annealing

Repeat $k \leftarrow 1$

- While $k<K$
- Randomly select a neighbor $y \in V\left(x_{c}\right)$
- $\delta \leftarrow f(y)-f\left(x_{c}\right)$
- If $\delta<0, x_{c}=y$.
- Otherwise, draw r between 0 and 1
- If $r<\exp (-\delta / T)$, then $x_{c}=y$
- If $f\left(x_{c}\right)<f\left(x^{*}\right), x^{*}=x_{c}$.
- $k \leftarrow k+1$
- Reduce T

Until $\quad T \leq T_{f}$

Example: traveling salesman problem

Best solution found

Practical comments

- Parameters must be tuned.
- In particular, the reduction rate of the temperature must be specified.
- Let δ_{t} be a typical increase of the objective function.
- In the beginning, we want such an increase to be accepted with probability p_{0} (e.g. $p_{0}=0.999$)
- At the end, we want such an increase to be accepted with probability p_{f} (e.g. $p_{f}=0.00001$)
- We allow for M updates of the temperature. So, for $m=0, \ldots, M$,

$$
T=-\frac{\delta_{t}}{\ln \left(p_{0}+\frac{p_{f}-p_{0}}{M} m\right)}
$$

Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification
Escape from local minima

Exploration: comments

- Neighborhood structure
- It is a "vehicle" to explore the solution space.
- Must be able to (potentially) reach any solution
- Must be tailored to the problem

Intensification: comments

- Local search.
- Exploit the neighborhood structure to find better solutions.
- Many variants are possible:
- exhaustive search: evaluate all neighbors
- limited search: evaluate a given number of neighbors
- randomized search: select the neighbors randomly

Diversification: comments

How to avoid being blocked in local minimum?

- Apply an algorithm from multiple starting points.
- How to choose starting point?
- How to avoid shooting in the dark?
- Allow the algorithm to proceed upwards: simulated annealing
- Climb the mountain to find another valley.
- How to decide when it is time to climb or to go down?
- Change the structure of the neighborhood: variable neighborhood search
- How to choose the neighborhood structures?

Meta-heuristics

- Methods designed to escape from local optima are sometimes called "meta-heuristics".
- Plenty of variants are available in the literature.
- In general, success depends on exploiting well the properties of the problem at hand.
- VNS is one of the simplest to code.
- Additional bio-inspired methods have also been proposed and applied: genetic algorithms, ant colony optimization, etc.

