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Introduction

General framework

Assumptions
@ Control U is deterministic.

Z(u)=h(X,Y,u)+e,
@ Various features of Z are considered: mean, variance, quantile, etc.

(z1(u), ..., zm(u))

@ They are combined in a single indicator:

f(u) =g(z1(v),...,zm(u))
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Introduction

General framework: example

Rico at Satellite
@ X: number of customers in the bar
Y': arrivals of customers
u: service time of Rico
Z(u): waiting time of the customers

°

°

°

@ z1(u): mean waiting time

@ z(u): maximum waiting time
°

f(u) = g(z1(v), 2(u)) = 21 + 2
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Introduction

General framework: the black box

L

External input — y|
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Introduction

Optimization problem

o2 fe)

subject to
uelUd CR"

@ u: decision variables

@ f(u): objective function
@ u € U: constraints

@ U: feasible set

If U is a finite set: combinatorial optimization.
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Classical optimization problems
Outline

© Classical optimization problems
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The knapsack problem

@ Patricia prepares a hike in the
mountain.

@ She has a knapsack with capacity Wkg.

@ She considers carrying a list of n items.

@ Each item has a utility u; and a weight
w;.

@ What items should she take to

maximize the total utility, while fitting
in the knapsack?
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Modeling

Decision variables

. 1 if item / goes into the knapsack,
"7 1 0 otherwise

Objective function

Constraints

n
Z Wi X; < W
i=1

x;€{0,1} i=1,...,n
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Classical optimization problems

Brute force algorithm

Enumeration
@ As U is finite, all solutions can be enumerated.
@ Each object can be in or out, for a total of 2” combinations.

@ For each of them, we must:

o Check that the weight is feasible.
o If so, calculate the utility and check if it is the largest so far.

Computational time
@ About 2n floating point operations per combination.

@ Assume a 1 Teraflops processor: 10'? floating point operations per
second.
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Classical optimization problems

Brute force algorithm

Computational time

@ If n =34, about 1 second to solve.

o If n =40, about 1 minute.

o If n =45, about 1 hour.

o If n =50, about 1 day.

@ If n =58, about 1 year.

@ If n =69, about 2583 years, more than the Christian Era.
°

If n =78, about 1,500,000 years, time elapsed since Homo Erectus
appeared on earth.

o If n =091, about 100 years, roughly the age of the universe.
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Classical optimization problems

Combinatorial optimization

@ The set of feasible solutions is finite.

@ But the number of feasible solutions grows exponentially with the size
of the problem.

@ No optimality condition can be exploited.
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Classical optimization problems

Traveling salesman problem

The problem
o Consider n cities.
@ For any pair (i, j) of cities, the distance dj; between them is known.

@ Find the shortest possible itinerary that starts from the home town of
the salesman, visit all other cities, and come back to the origin.

Feasible solutions
@ Number of feasible solutions:

(n—1)! z\/m<n—1>”—1

e

@ Again, the number of feasible solutions grows exponentially with the
size of the problem.
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TSP: example

Lausanne, Geneva, Zurich, Bern

228
2 (D

Home town: Lausanne

3 possibilities:
oL—>B—-7Z—-G— L:572km
oL—>B—>G—Z— L:769 km
oL —>7Z—-B—G— L:575km
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Classical optimization problems

Integer linear optimization problem

. o Integer Linear optimization
Linear optimization

T min ¢ x
mﬁg c'x x€Rn
xeR"
) subject to
subject to
Ax=b Ax=0>b
x = 0. x € N.
where A € R™*" b € R™ and
ceR" where A€ R™" b e R™ and

<« c € R". )
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Classical optimization problems

Feasible set

Intersection polyhedron /integer

Polyhedron lattice
3 . 3 - . . . . )
2 4
1 +4
0 1 1 1 1 \
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Outline

© Greedy heuristics

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 18 /89



Greedy heuristics

Greedy heuristics

Principles
@ Step by step construction of a feasible solution.
@ At each step, a local optimization is performed.

@ Decisions taken at previous steps are definitive.

Properties
@ Easy to implement.
@ Short computational time.
@ May generate poor solutions.

@ Used to generate initial solutions.
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Greedy heuristics

Greedy heuristics

The knapsack problem
@ Sort the items by decreasing order of u;/w;.

@ For each item in this order, put it in the sack if it fits.

The traveling salesman problem

@ Start from home.
@ At each step, select the closest city as the next one.

20 /89
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TSP: 12 cities (euclidean dist.)

®
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TSP: 12 cities
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TSP: 12 cities

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 28/89



TSP: 12 cities
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TSP: 12 cities
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TSP: 12 cities
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TSP: 12 cities
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TSP: 12 cities
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TSP: 12 cities

Length: 165.6
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Greedy heuristics

Integer optimization

Intuitive approach
@ Solve the continuous relaxation.

@ Round the solution.
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Greedy heuristics

Example
min —3x; — 13xo
xER2
subject to
2x1 + 9% < 40
11x; — 8x, < 82
x;,x2 > 0
x1,x2 €N
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Greedy heuristics

Relaxation: feasible set
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Greedy heuristics

Optimal solution of the relaxation

Opt. solution relaxation (9.2,2.4)
0 % % % % % % % % % %

0 1 2 3 4 5 6 7 8 9 10
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Greedy heuristics

Integrality constraints

1 - L] L] L] L] L] . L] L] L]
Opt. solution relaxation (9.2,2.4)

0 t t t t— t t+—— t t

0 1 2 3 4 5 6 7 9 10
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Greedy heuristics

Infeasible neighbors

5AF . [ . . ° . . o . .

Infeasible neighbors

1 - L] L] L] L] L] . L] L] L]
Opt. solution relaxation (9.2,2.4)

0 t t t t— t t+—— t t

0 1 2 3 4 5 6 7 9 10
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Greedy heuristics

Solution of the integer optimization problem

5AF . . . . ° . . o . .

Infeasible neighbors

Optimal solution (integer)

1 - L] L] L] L] L] . L] L] L]
Opt. solution relaxation (9.2,2.4)

0 t t t t— t t+—— t t

o 1 2 3 4 5 6 7 8 9 10
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Greedy heuristics

Issues

@ There are 2" different ways to round. Which one to choose?
@ Rounding may generate an infeasible solution.

@ The rounded solution may be far from the optimal solution.
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Greedy heuristics

Optimization methods

Exact methods (branch and bound)
@ Finds the optimal solution.

@ Suffers from the curse of dimensionality.

Approximation algorithms
@ Finds a sub-optimal solution.
@ Guarantees a bound on the quality of the solution.

@ Mainly used for theoretical purposes.

Heuristics
@ Smart exploration of the solution space.

@ No guarantee about optimality.

@ Designed to mimic manual interventions.
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Outline

O Heuristics
@ Exploration
@ Intensification
@ Diversification
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Heuristics

Three main mechanisms
Exploration

@ Objective: create operators to visit the solution space.
@ Main concept: neighborhood.

Intensification
@ Objective: improve an existing solution as much as possible.

@ Main concepts: local search.

Diversification
@ Objective: explore over regions of the solution space.
@ Main concept: metaheuristics.
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el
Neighborhood

Concept
@ The feasible set is too large.

@ At each iteration, restrict the optimization problem to a small feasible
subset.

@ Ideally, the small subset can be enumerated.

@ Typically, it consists of solutions obtained from simple modifications
of the current solution.

@ The small subset is called a neighborhood.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 46 /89



Integer optimization: neighborhood

@ Consider the current iterate x € Z".

@ For each k =1,...,n, define 2 neighbors by increasing and
decreasing the value of x; by one unit.

@ The neighbors y** and y*~ are defined as
yik+:yik_:Xi7Vi7ék7 y//:+:Xk+17 }/;/:_:Xk—l-

@ Example

x=(3,5,2,8) y*"=(3,6,2,8) y* =(3,4,2,8)
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Integer optimization: neighborhood
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Integer optimization: neighborhood

@ The concept of neighborhood is fairly general.
@ It must be defined based on the structure of the problem.

@ Creativity is required here.
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Intensification
Local search

@ Consider the integer optimization problem
min f(x
XEL" ( )
subject to
x e F.

o Consider the neighborhood structure V(x), where V(x) is the set of
neighbors of x.

@ At each iteration k, consider the neighbors in V/(xx) one at a time.

@ For each y € V/(xk), if f(y) < f(xk), then x,+1 = y and proceed to
the next iteration.

o If f(y) > f(xk), Yy € V(xk), xk is a local minimum. Stop.
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Local search: example

min *3X1 — 13X2

x€ER2
subject to
2x1 +9x% < 40
11X1 — 8X2 S 82
x1,x2 € N
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Local search: example
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Local search: example

xo = (6,0) - Neighborhood: E- N -W -S
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Local search: example

xo = (0,3) - Neighborhood: E- N -W-S

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 54 /89



Local search: example

xo = (6,0) - Neighborhood : N-W -S - E

0 1 2 3 4 5 6 7 8 9 10
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Local search: comments

@ The algorithm stops at a local minimum, that is a solution better
than all its neighbors.

@ The outcome depends on the starting point and the structure of the
neighborhood.

@ The neighborhood must be sufficiently large to increase the chances of
improvement, and sufficiently small to avoid a lengthy enumeration.

@ Example of a neighborhood too small: one neighbor at the west.

@ Example of a neighborhood too large: each feasible point is in the
neighborhood.

@ It is good practice to use symmetric neighborhoods:

y € V(x) <= x € V(y).
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[T e
The knapsack problem

max UTX
xe€{0,1}"

subject to
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[T e
The knapsack problem: neighborhood

@ Current solution: for each item /i, x;, = 0 or x; = 1.

@ Neighbor solution: select an item j, and change the decision:
xj 1 —x;.

@ Warning: check feasibility.

@ Generalization: neighborhood of size k: select k items, and change
the decision for them (checking feasibility).
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[T e
The knapsack problem: neighborhood

@ A neighborhood of size k modifies k variables.

@ Number of neighbors:
n!

kl(n— k)!
@ k =1: n neighbors.
@ k = n: 1 neighbor.
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T E T
TSP: 2-OPT neighborhood

2-OPT
@ Select two cities.
@ Swap their position in the tour.

@ Visit all intermediate cities in reverse order.

Example

Current tour:
A-B-C-D-E-F-G-H-A

Exchange C and G to obtain

A-B-G—F-E-D—-C-H-A.
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Intensifcaion
Neighborhood: 2-OPT(1,9)

Example
@ Try to improve the solution using 2-OPT swapping 1 and 9.
o Before: H-8-7-11-6-5-1-2-3-4-10-9-H (length: 165.6)
o After : H-8-7-11-6-5-9-10-4-3-2-1-H (length: 173.3)

@ No improvement.
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Length: 165.6
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Length: 173.3
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Local search

@ Consider each pair of nodes.
@ Apply 2-OPT.

@ Select the best tour.
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Current tour

Length: 165.6
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Length: 155.8
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Intensifcaion
Best neighbor: 2-OPT(8,9)

Length: 143.0
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Length: 139.5
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Intensifcaion
Best neighbor: 2-OPT(7,10)

Length: 137.5
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Intensifcaion
Best neighbor: 2-OPT(10,9)

Length: 130.7
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PGt
Variable Neighborhood Search

@ aka VNS
@ Idea: consider several neighborhood structures.

@ When a local optimum has been found for a given neighborhood
structure, continue with another structure.
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Diversification
VNS: method

Input @ Vi, Vb, ..., Vk neighborhood structures.
@ Initial solution xg.

Initialization @ x. <+ xg
@ k+1

Iterations Repeat
@ Apply local search from x. using neighborhood V/

x4 LS(xc, Vi)

o If f(xT) < f(xc), then xc «— xT, k + 1.
@ Otherwise, k + k + 1.

Until k = K.
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B
VNS: example for the knapsack problem

@ Neighborhood of size k: modify k variables.
@ Local search: current iterate: x.

@ randomly select a neighbor x*
o if wixt < W and uTxt > uTx., then x. + x*

@ Repeat 1000 times, for any k.

@ The complexity is therefore independent of k.
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B
VNS: example for the knapsack problem

300 T T T 1 T T T T T ]-2
411
250 410
49 o]
200 | 18 38
e
x 17 &
": 150' —6 é
L 45
100 la 2
50 t 13
42
0 1 1 1 1 1

0 2 4 6 8'10 12 14 16 18 20

Iterations
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Simulated annealing

Analogy with metallurgy
@ Heating a metal and then cooling it down slowly improves its
properties.
@ The atoms take a more solid configuration.
In optimization:
@ Local search can both decrease and increase the objective function.
@ At “high temperature”, it is common to increase.
@ At “low temperature”, increasing happens rarely.
@ Simulated annealing: slow cooling = slow reduction of the probability
to increase.
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Simulated annealing

Modify the local search.

For the sake of simplicity: consider a neighborhood structure containing
only feasible solutions.

Let x, be the current iterate

@ Select y € V(xk).
o If f(y) < f(xk), then xx11 =y.
@ Otherwise, x,+1 = y with probability

_ fO)—Fx)
e T
with T > 0.
Concretely, draw r between 0 and 1.
Accept y as next iterate if
_ fO)—Fx)
€ T >r
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Simulated annealing

Prob(xx41 = y) =

F)—Fx)

{ 1 if £(y) < f(xx)
e T iff(y)> f(x«)

o If T is high (hot temperature), high probability to increase.

@ If T is low, almost only decreases.
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Simulated annealing

Example : f(xx) =3

1 T T T T T T T T
—~ 08
>
T o6
&
X
- 04
: f(y) =5 e |
V) = 6 e
0 1 1 |y 1 1
0 1 2 3 4 5 6 7 8 9
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Simulated annealing

@ In practice, start with high T for flexibility.

@ Then, decrease T progressively.
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Simulated annealing

Initial solution xg

Initial temperature Tp, minimum temperature Tr
Neighborhood structure V/(x)

Maximum number of iterations K

Input

]
*]
]
*]

Initialize xc < xg, x* < x0, T < Tp
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Simulated annealing

Repeat k «+ 1
o While k < K
@ Randomly select a neighbor y € V/(x.)

5§ fy) — fx)
Ifo <0, xc=y.
Otherwise, draw r between 0 and 1
o If r < exp(—d/T), then xc =y

o If f(xc) < f(x*), x* = x.

o k+ k+1
@ Reduce T

Until T < T

¢ ¢ ©
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Example: traveling salesman problem

320 1000
300 900
280 800
260 700
240 600
X 220 500
200 400
180 300
160 200
140 100
120 0
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Best solution found

Length : 128.8
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Practical comments

@ Parameters must be tuned.
@ In particular, the reduction rate of the temperature must be specified.

Let ; be a typical increase of the objective function.
In the beginning, we want such an increase to be accepted with

probability py (e.g. po = 0.999)
@ At the end, we want such an increase to be accepted with probability

pr (e.g. pr = 0.00001)
We allow for M updates of the temperature. So, for m=20,..., M,

= In(Po + pfA—/IPO m)

¢ ©

©
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Heuristics: general framework

Exploration
Neighborhood

Intensification
Local search

Diversification

Escape from local minima
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Exploration: comments

Neighborhood structure
It is a “vehicle” to explore the solution space.

Must be able to (potentially) reach any solution

e 6 o ¢

Must be tailored to the problem
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Intensification: comments

@ Local search.

@ Exploit the neighborhood structure to find better solutions.
@ Many variants are possible:

@ exhaustive search: evaluate all neighbors
o limited search: evaluate a given number of neighbors
@ randomized search: select the neighbors randomly
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Diversification: comments

How to avoid being blocked in local minimum?
@ Apply an algorithm from multiple starting points.

o How to choose starting point?
@ How to avoid shooting in the dark?

@ Allow the algorithm to proceed upwards: simulated annealing

@ Climb the mountain to find another valley.
o How to decide when it is time to climb or to go down?

@ Change the structure of the neighborhood: variable neighborhood
search

@ How to choose the neighborhood structures?
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Meta-heuristics

@ Methods designed to escape from local optima are sometimes called
“meta-heuristics” .

@ Plenty of variants are available in the literature.

@ In general, success depends on exploiting well the properties of the
problem at hand.

@ VNS is one of the simplest to code.

@ Additional bio-inspired methods have also been proposed and applied:
genetic algorithms, ant colony optimization, etc.
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