
Optimization and Simulation

Markov Chain Monte Carlo Methods

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering

Ecole Polytechnique Fédérale de Lausanne

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 1 / 51



Motivation

Outline

1 Motivation

2 Introduction to Markov chains

3 Stationary distributions

4 Metropolis-Hastings

5 Gibbs sampling

6 Simulated annealing

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 2 / 51



Motivation

The knapsack problem

Patricia prepares a hike in the
mountain.

She has a knapsack with capacity W kg.

She considers carrying a list of n items.

Each item has a utility ui and a weight
wi .

What items should she take to
maximize the total utility, while fitting
in the knapsack?
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Motivation

Knapsack problem

Simulation

Let X be the set of all possible
configurations (2n).

Define a probability distribution:

P(x) =
U(x)

∑

y∈X U(y)

Question: how to draw from this
discrete random variable?
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Introduction to Markov chains

Markov Chains

Andrey Markov, 1856–1922, Russian mathematician.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 6 / 51



Introduction to Markov chains

Markov Chains: glossary

Stochastic process

Xt , t = 0, 1, . . . ,, collection of r.v. with same support, or states space
{1, . . . , i , . . . , J}.

Markov process: (short memory)

Pr(Xt = i |X0, . . . ,Xt−1) = Pr(Xt = i |Xt−1)

Homogeneous Markov process

Pr(Xt = j |Xt−1 = i) = Pr(Xt+k = j |Xt−1+k = i) = Pij ∀t ≥ 1, k ≥ 0.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 7 / 51



Introduction to Markov chains

Markov Chains

Transition matrix

P ∈ R
J×J .

Properties:
J
∑

j=1

Pij = 1, i = 1, . . . , J, Pij ≥ 0, ∀i , j ,

Ergodicity

If state j can be reached from state i with non zero probability, and i

from j , we say that i communicates with j .

Two states that communicate belong to the same class.

A Markov chain is irreducible or ergodic if it contains only one class.

With an ergodic chain, it is possible to go to every state from any
state.
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Introduction to Markov chains

Markov Chains

Aperiodic

Pt
ij is the probability that the process reaches state j from i after t

steps.

Consider all t such that Pt
ii > 0. The largest common divisor d is

called the period of state i .

A state with period 1 is aperiodic.

If Pii > 0, state i is aperiodic.

The period is the same for all states in the same class.

Therefore, if the chain is irreducible, if one state is aperiodic, they all
are.
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Introduction to Markov chains

A periodic chain
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, d = 3.

Pt
ii > 0 for t = 3, 6, 9, 12, 15 . . .
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Introduction to Markov chains

Another periodic chain
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, d = 2.

Pt
ii > 0 for t = 4, 6, 8, 10, 12, . . .
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Introduction to Markov chains

An aperiodic chain
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, d = 1.

Pt
ii > 0 for t = 3, 4, 6, 7, 8, 9, 10, 11, 12 . . .
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Introduction to Markov chains

Aperiodic chain

An equivalent definition

An irreducible Markov chain is said to be aperiodic if for some t ≥ 0 and
some state i , we have

Pr(Xt = i |X0 = i) > 0

and
Pr(Xt+1 = i |X0 = i) > 0
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Introduction to Markov chains

Intuition

Oscillation

P =

(

0 1
1 0

)

The chain will not “converge” to something stable.
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Stationary distributions

Markov Chains

Stationary probabilities

Pr(j) =
J
∑

i=1

Pr(j |i) Pr(i)

Stationary probabilities: unique solution of the system

πj =
J
∑

i=1

Pijπi , ∀j = 1, . . . , J. (1)

J
∑

j=1

πj = 1.

Solution exists for any irreducible chain.
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Stationary distributions

Example

A machine can be in 4 states with respect to wear

perfect condition,
partially damaged,
seriously damaged,
completely useless.

The degradation process can be modeled by an irreducible aperiodic
homogeneous Markov process, with the following transition matrix:

P =









0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0
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Stationary distributions

Example

Stationary distribution:
(
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0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0









=

(
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)

Machine in perfect condition 5 days out of 8, in average.

Repair occurs in average every 32 days

From now on: Markov process = irreducible aperiodic homogeneous
Markov process
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Stationary distributions

Markov Chains

Detailed balance equations

Consider the following system of equations:

xiPij = xjPji , i 6= j ,
J
∑

i=1

xi = 1 (2)

We sum over i :
J
∑

i=1

xiPij = xj

J
∑

i=1

Pji = xj .

If (2) has a solution, it is also a solution of (1). As π is the unique solution
of (1) then x = π.

πiPij = πjPji , i 6= j

The chain is said time reversible

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 19 / 51



Stationary distributions

Stationary distributions

Property of irreducible aperiodic Marlov chains

πj = lim
t→∞

Pr(Xt = j) j = 1, . . . , J.

Ergodicity

Let f be any function on the state space.

Then, with probability 1,

lim
T→∞

1

T

T
∑

t=1

f (Xt) =
J
∑

j=1

πj f (j).

Computing the expectation of a function of the stationary states is
the same as to take the average of the values along a trajectory of the
process.
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Stationary distributions

Example: T = 100
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Stationary distributions

Example: T = 1000
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Stationary distributions

Example: T = 10000
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Stationary distributions

A periodic example

It does not work for periodic chains

P =

(

0 1
1 0

)

Pr(Xt = 1) =

{

1 if t is odd
0 if t is even

lim
t→∞

Pr(Xt = 1) does not exist

Stationary distribution

π =

(

0.5
0.5

)
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Metropolis-Hastings

Simulation

Motivation

Sample from very large discrete sets (e.g. the knapsack).

Full enumeration of the set is infeasible.

Procedure

We want to simulate a r.v. X with pmf

Pr(X = j) = pj .

We generate a Markov process with limiting probabilities pj (how?)

We simulate the evolution of the process.

pj = πj = lim
t→∞

Pr(Xt = j) j = 1, . . . , J.
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Metropolis-Hastings

Simulation

Assume that we are interested in simulating

E[f (X )] =
J
∑

j=1

f (j)pj .

We use ergodicity to estimate it with

1

T

T
∑

t=1

f (Xt).

Drop early states (see above example)

Better estimate:

1

T

T+k
∑

t=1+k

f (Xt).
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Metropolis-Hastings

Metropolis-Hastings

Nicholas Metropolis W. Keith Hastings
1915 – 1999 1930 –
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Metropolis-Hastings

Metropolis-Hastings

Context

Let bj , j = 1, . . . , J be positive numbers.

Let B =
∑

j bj . If J is huge, B cannot be computed.

Let πj = bj/B .

We want to simulate a r.v. with pmf πj .

Explore the set

Consider a Markov process on {1, . . . , J} with transition probability
Q.

Designed to explore the space {1, . . . , J} efficiently

Not too fast (and miss important points to sample)

Not too slowly (and take forever to reach important points)
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Metropolis-Hastings

Metropolis-Hastings

Define another Markov process

Based on the exact same states {1, . . . , J} as the previous ones

Assume the process is in state i , that is Xt = i .

Simulate the (candidate) next state j according to Q.

Define

Xt+1 =

{

j with probability αij

i with probability 1− αij
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Metropolis-Hastings

Metropolis-Hastings

Transition probability P

Pij = Qijαij if i 6= j

Pii = Qiiαii +
∑

ℓ6=i Qiℓ(1− αiℓ) otherwise

Must verify the property

1 =
∑

j Pij = Pii +
∑

j 6=i Pij

= Qiiαii +
∑

ℓ6=i Qiℓ(1− αiℓ) +
∑

j 6=i Qijαij

= Qiiαii +
∑

ℓ6=i Qiℓ −
∑

ℓ6=i Qiℓαiℓ +
∑

j 6=i Qijαij

= Qiiαii +
∑

ℓ6=i Qiℓ

As
∑

j Qij = 1, we have αii = 1.
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Metropolis-Hastings

Metropolis-Hastings

Time reversibility

πiPij = πjPji , i 6= j

that is
πiQijαij = πjQjiαji , i 6= j

It is satisfied if

αij =
πjQji

πiQij

and αji = 1

or
πiQij

πjQji

= αji and αij = 1
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Metropolis-Hastings

Metropolis-Hastings

As αij is a probability

αij = min

(

πjQji

πiQij

, 1

)

Simplification

Remember: πj = bj/B . Therefore

αij = min

(

bjBQji

biBQij

, 1

)

= min

(

bjQji

biQij

, 1

)

The normalization constant B does not play a role in the computation of
αij .

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 33 / 51



Metropolis-Hastings

Metropolis-Hastings

In summary

Given Q and bj

defining α as above

creates a Markov process characterized by P

with stationary distribution π.
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Metropolis-Hastings

Metropolis-Hastings

Algorithm

1 Choose a Markov process characterized by Q.

2 Initialize the chain with a state i : t = 0, X0 = i .

3 Simulate the (candidate) next state j based on Q.

4 Let r be a draw from U[0, 1[.

5 Compare r with αij = min
(

bjQji

biQij
, 1
)

. If

r <
bjQji

biQij

then Xt+1 = j , else Xt+1 = i .

6 Increase t by one.

7 Goto step 3.
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Metropolis-Hastings

Example

b =(20,8, 3 , 1 )
π =( 5
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Run MH for 10000 iterations. Collect statistics after 1000.

Accept: [2488, 1532, 801, 283]

Reject: [0, 952, 1705, 2239]

Simulated: [0.627, 0.250, 0.095, 0.028]

Target: [0.625, 0.250, 0.09375, 0.03125]
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Gibbs sampling

Gibbs sampling

Motivation

Draw from multivariate distributions.

Main difficulty: deal with correlations.

Metropolis-Hastings

Let X = (X 1,X 2, . . . ,X n) be a random vector with pmf (or pdf)
p(x).

Assume we can draw from the marginals:

Pr(X i |X j = x j , j 6= i), i = 1, . . . , n.

Markov process. Assume current state is x .

Draw randomly (equal probability) a coordinate i .
Draw r from the ith marginal.
New state: y = (x1, . . . , x i−1, r , x i+1, . . . , xn).
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Gibbs sampling

Gibbs sampling

Transition probability

Qxy =
1

n
Pr(X i = r |X j = x j , j 6= i) =

p(y)

nPr(X j = x j , j 6= i)

The denominator is independent of X i .

So Qxy is proportional to p(y).

Metropolis-Hastings

αxy = min

(

p(y)Qyx

p(x)Qxy
, 1

)

= min

(

p(y)p(x)

p(x)p(y)
, 1

)

= 1

The candidate state is always accepted.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 39 / 51



Gibbs sampling

Example: bivariate normal distribution

(

X

Y

)

∼ N

((

µX

µY

)

,

(

σ2
X ρσXσY

ρσXσY σ2
Y

))

Marginal distribution:

Y |(X = x) ∼ N

(

µY +
σY
σX

ρ(x − µX ), (1− ρ2)σ2
Y

)

Apply Gibbs sampling to draw from:

N

((

0
0

)

,

(

1 0.9
0.9 1

))

Note: just for illustration. Should use Cholesky factor.
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Gibbs sampling

Example: pdf
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Gibbs sampling

Example: draws from Gibbs sampling
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Draws from Gibbs sampling

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 42 / 51



Simulated annealing

Outline

1 Motivation

2 Introduction to Markov chains

3 Stationary distributions

4 Metropolis-Hastings

5 Gibbs sampling

6 Simulated annealing

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 43 / 51



Simulated annealing

Simulated annealing

Combinatorial optimization

min
x∈F

f (x)

where the feasible set F is a large finite set of vectors.

Set of optimal solutions

X ∗ = {x ∈ F|f (x) ≤ f (y), ∀y ∈ F} and f (x∗) = f ∗, ∀x∗ ∈ X ∗.

Probability mass function on F

pλ(x) =
e−λf (x)

∑

y∈F e−λf (y)
, λ > 0.

M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 44 / 51



Simulated annealing

Simulated annealing

pλ(x) =
e−λf (x)

∑

y∈F e−λf (y)

Equivalently

pλ(x) =
eλ(f

∗−f (x))

∑

y∈F eλ(f
∗−f (y))

As f ∗ − f (x) ≤ 0, when λ → ∞, we have

lim
λ→∞

pλ(x) =
δ(x ∈ X ∗)

|X ∗|
,

where

δ(x ∈ X ∗) =

{

1 if x ∈ X ∗

0 otherwise.
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Simulated annealing

Example

F = {1, 2, 3} f (F) = {0, 1, 0}

pλ(1) =
1

2 + e−λ

pλ(2) =
e−λ

2 + e−λ

pλ(3) =
1

2 + e−λ
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Simulated annealing

Example
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Simulated annealing

Simulated annealing

If λ is large,

we generate a Markov chain with stationary distribution pλ(x).

The mass is concentrated on optimal solutions.

As the normalizing constant is not needed, only eλ(f
∗−f (x)) is used.

Construction of the Markov process through the concept of
neighborhood.

A neighbor y of x is obtained by simple modifications of x .

The Markov process will proceed from neighbors to neighbors.

The neighborhood structure must be designed such that the chain is
irreducible, that is the whole space F must be covered.

It must be designed also such that the size of the neighborhood is
reasonably small.
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Simulated annealing

Neighborhood

Metropolis-Hastings

Denote N(x) the set of neighbors of x .

Define a Markov process where the next state is a randomly drawn
neighbor.

Transition probability:

Qxy =
1

|N(x)|

Metropolis Hastings:

αxy = min

(

p(y)Qyx

p(x)Qxy
, 1

)

= min

(

e−λf (y)|N(x)|

e−λf (x)|N(y)|
, 1

)
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Simulated annealing

Neighborhood

Notes

The neighborhood structure can always be arranged so that each
vector has the same number of neighbors. In this case,

αxy = min

(

e−λf (y)

e−λf (x)
, 1

)

If y is better than x , the next state is automatically accepted.

Otherwise, it is accepted with a probability that depends on λ.

If λ is high, the probability is small.

When λ is small, it is easy to escape from local optima.
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Simulated annealing

Heuristic

Issue

The number of iterations needed to reach a stationary state and draw
an optimal solution may exceed the number of feasible solutions in
the set.

The acceptance probability is very small.

Therefore, a complete enumeration works better.

The method is used as a heuristic.
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